MatSciBERT_BIOMAT_NER2
This model is a fine-tuned version of m3rg-iitd/matscibert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5936
- Precision: 0.9555
- Recall: 0.9490
- F1: 0.9523
- Accuracy: 0.9426
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0537 | 1.0 | 1171 | 0.3242 | 0.9568 | 0.9456 | 0.9512 | 0.9406 |
0.0163 | 2.0 | 2342 | 0.3726 | 0.9578 | 0.9499 | 0.9538 | 0.9447 |
0.0054 | 3.0 | 3513 | 0.4411 | 0.9565 | 0.9496 | 0.9530 | 0.9432 |
0.0029 | 4.0 | 4684 | 0.4982 | 0.9562 | 0.9480 | 0.9521 | 0.9420 |
0.0017 | 5.0 | 5855 | 0.5276 | 0.9548 | 0.9472 | 0.9510 | 0.9404 |
0.001 | 6.0 | 7026 | 0.5463 | 0.9562 | 0.9494 | 0.9528 | 0.9429 |
0.0005 | 7.0 | 8197 | 0.5741 | 0.9567 | 0.9500 | 0.9533 | 0.9437 |
0.0004 | 8.0 | 9368 | 0.5979 | 0.9557 | 0.9494 | 0.9526 | 0.9428 |
0.0003 | 9.0 | 10539 | 0.6028 | 0.9558 | 0.9496 | 0.9527 | 0.9428 |
0.0004 | 10.0 | 11710 | 0.5936 | 0.9555 | 0.9490 | 0.9523 | 0.9426 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for judithrosell/MatSciBERT_BIOMAT_NER2
Base model
m3rg-iitd/matscibert