--- license: mit base_model: microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: PubMedBERT_CRAFT_NER results: [] --- # PubMedBERT_CRAFT_NER This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1031 - Precision: 0.8429 - Recall: 0.8679 - F1: 0.8552 - Accuracy: 0.9734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 347 | 0.1280 | 0.7851 | 0.8360 | 0.8097 | 0.9647 | | 0.1944 | 2.0 | 695 | 0.1092 | 0.8187 | 0.8615 | 0.8395 | 0.9707 | | 0.046 | 3.0 | 1041 | 0.1031 | 0.8429 | 0.8679 | 0.8552 | 0.9734 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0