--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: SciBERT_BC5CDR_NER_new results: [] --- # SciBERT_BC5CDR_NER_new This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0868 - Precision: 0.9785 - Recall: 0.9771 - F1: 0.9778 - Accuracy: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 286 | 0.0907 | 0.9766 | 0.9681 | 0.9724 | 0.9687 | | 0.1007 | 2.0 | 572 | 0.0834 | 0.9784 | 0.9737 | 0.9761 | 0.9735 | | 0.1007 | 3.0 | 858 | 0.0868 | 0.9785 | 0.9771 | 0.9778 | 0.9755 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0