--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: SciBERT_CRAFT_NER results: [] --- # SciBERT_CRAFT_NER This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1151 - Precision: 0.8587 - Recall: 0.8688 - F1: 0.8637 - Accuracy: 0.9733 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 347 | 0.1181 | 0.8302 | 0.8514 | 0.8407 | 0.9688 | | 0.1267 | 2.0 | 695 | 0.1140 | 0.8435 | 0.8659 | 0.8546 | 0.9717 | | 0.0323 | 3.0 | 1041 | 0.1151 | 0.8587 | 0.8688 | 0.8637 | 0.9733 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0