--- base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: SciBERT_JNLPBA_NER results: [] --- # SciBERT_JNLPBA_NER This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1456 - Precision: 0.8042 - Recall: 0.8228 - F1: 0.8134 - Accuracy: 0.9512 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.234 | 1.0 | 582 | 0.1536 | 0.7820 | 0.7944 | 0.7882 | 0.9469 | | 0.1398 | 2.0 | 1164 | 0.1489 | 0.7962 | 0.8033 | 0.7997 | 0.9495 | | 0.1212 | 3.0 | 1746 | 0.1456 | 0.8042 | 0.8228 | 0.8134 | 0.9512 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0