--- license: mit tags: - text-generation --- # How to use ```python3 from transformers import MT5Tokenizer, MT5ForConditionalGeneration tokenizer = MT5Tokenizer.from_pretrained('juierror/thai-news-summarization') model = MT5ForConditionalGeneration.from_pretrained('juierror/thai-news-summarization') text = "some news with head line" tokenized_text = tokenizer(text, truncation=True, padding=True, return_tensors='pt') source_ids = tokenized_text['input_ids'].to("cpu", dtype = torch.long) source_mask = tokenized_text['attention_mask'].to("cpu", dtype = torch.long) generated_ids = model.generate( input_ids = source_ids, attention_mask = source_mask, max_length=512, num_beams=5, repetition_penalty=1, length_penalty=1, early_stopping=True, no_repeat_ngram_size=2 ) pred = tokenizer.decode(generated_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True) ```