File size: 3,060 Bytes
5d543c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: wav2vec2-base-music_genre_classifier-g4-firstseconds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-music_genre_classifier-g4-firstseconds
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0453
- Accuracy: 0.7794
- F1: 0.7715
- Recall: 0.7722
- Precision: 0.7752
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
| 2.2104 | 1.0 | 267 | 2.2272 | 0.3755 | 0.3160 | 0.3656 | 0.3611 |
| 1.6919 | 2.0 | 534 | 1.7563 | 0.4622 | 0.3974 | 0.4519 | 0.3981 |
| 1.3183 | 3.0 | 801 | 1.4686 | 0.5366 | 0.4834 | 0.5237 | 0.5364 |
| 1.0196 | 4.0 | 1068 | 1.2824 | 0.6183 | 0.5754 | 0.6094 | 0.5873 |
| 1.0655 | 5.0 | 1335 | 1.2136 | 0.6196 | 0.5822 | 0.6075 | 0.6142 |
| 0.8205 | 6.0 | 1602 | 1.0635 | 0.6778 | 0.6449 | 0.6687 | 0.6611 |
| 0.6309 | 7.0 | 1869 | 1.0256 | 0.7088 | 0.6798 | 0.6975 | 0.7004 |
| 0.4618 | 8.0 | 2136 | 0.9435 | 0.7435 | 0.7330 | 0.7373 | 0.7387 |
| 0.4057 | 9.0 | 2403 | 0.9192 | 0.7534 | 0.7403 | 0.7465 | 0.7507 |
| 0.2491 | 10.0 | 2670 | 0.9099 | 0.7596 | 0.7539 | 0.7510 | 0.7640 |
| 0.2548 | 11.0 | 2937 | 1.0901 | 0.7336 | 0.7305 | 0.7291 | 0.7475 |
| 0.0885 | 12.0 | 3204 | 1.0956 | 0.7447 | 0.7417 | 0.7387 | 0.7519 |
| 0.0988 | 13.0 | 3471 | 1.0585 | 0.7695 | 0.7623 | 0.7634 | 0.7641 |
| 0.1982 | 14.0 | 3738 | 1.0453 | 0.7794 | 0.7715 | 0.7722 | 0.7752 |
| 0.0966 | 15.0 | 4005 | 1.0914 | 0.7732 | 0.7676 | 0.7690 | 0.7706 |
### Framework versions
- Transformers 4.46.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|