--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: wav2vec2-base-music_genre_classifier-g4-firstseconds results: [] --- # wav2vec2-base-music_genre_classifier-g4-firstseconds This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0453 - Accuracy: 0.7794 - F1: 0.7715 - Recall: 0.7722 - Precision: 0.7752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 2.2104 | 1.0 | 267 | 2.2272 | 0.3755 | 0.3160 | 0.3656 | 0.3611 | | 1.6919 | 2.0 | 534 | 1.7563 | 0.4622 | 0.3974 | 0.4519 | 0.3981 | | 1.3183 | 3.0 | 801 | 1.4686 | 0.5366 | 0.4834 | 0.5237 | 0.5364 | | 1.0196 | 4.0 | 1068 | 1.2824 | 0.6183 | 0.5754 | 0.6094 | 0.5873 | | 1.0655 | 5.0 | 1335 | 1.2136 | 0.6196 | 0.5822 | 0.6075 | 0.6142 | | 0.8205 | 6.0 | 1602 | 1.0635 | 0.6778 | 0.6449 | 0.6687 | 0.6611 | | 0.6309 | 7.0 | 1869 | 1.0256 | 0.7088 | 0.6798 | 0.6975 | 0.7004 | | 0.4618 | 8.0 | 2136 | 0.9435 | 0.7435 | 0.7330 | 0.7373 | 0.7387 | | 0.4057 | 9.0 | 2403 | 0.9192 | 0.7534 | 0.7403 | 0.7465 | 0.7507 | | 0.2491 | 10.0 | 2670 | 0.9099 | 0.7596 | 0.7539 | 0.7510 | 0.7640 | | 0.2548 | 11.0 | 2937 | 1.0901 | 0.7336 | 0.7305 | 0.7291 | 0.7475 | | 0.0885 | 12.0 | 3204 | 1.0956 | 0.7447 | 0.7417 | 0.7387 | 0.7519 | | 0.0988 | 13.0 | 3471 | 1.0585 | 0.7695 | 0.7623 | 0.7634 | 0.7641 | | 0.1982 | 14.0 | 3738 | 1.0453 | 0.7794 | 0.7715 | 0.7722 | 0.7752 | | 0.0966 | 15.0 | 4005 | 1.0914 | 0.7732 | 0.7676 | 0.7690 | 0.7706 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3