jwf5 commited on
Commit
44ffc70
1 Parent(s): 2d56d39

Uploading PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 253.77 +/- 22.77
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54c207e700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f54c207e790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f54c207e820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f54c207e8b0>", "_build": "<function ActorCriticPolicy._build at 0x7f54c207e940>", "forward": "<function ActorCriticPolicy.forward at 0x7f54c207e9d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f54c207ea60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f54c207eaf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f54c207eb80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f54c207ec10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f54c207eca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f54c207ed30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f54c207b4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673403148086775218, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABcVrzDVTS6eHyQOXcUMDMZi5m77l+ouAAAgD8AAIA/TQLgPbgZLD+Wfhu9wKhzvmFTJD0hREA9AAAAAAAAAABmKfa9HZBwPqYtQj7iKBW+qVkhPdtqnz0AAAAAAAAAAIAeZ73oa84+7+6ovamlVb44QNK93gHnPAAAAAAAAAAATdnYvYkBVz3+EA0+xz59vkcTWT2eq6S7AAAAAAAAAADYRJO+D9EQP+1Z0D38Ooa+Q5muvUSVuz0AAAAAAAAAAOa9Nz4tFBQ/u3rVveAGvr6M/tA8jh54PQAAAAAAAAAAQBu2PXv+qrpTPF85BAM6tmbPALowXn64AAAAAAAAAABa4WA+yyhiP8bOaD35qpy+6HtBPo6zAb4AAAAAAAAAABr6OT2uFbC6UL+Os8fQ8a5YuXY5GiS7MwAAgD8AAIA/ZhJnPQ8kIbxwxr89ciPpvTLi/rxAcFA+AACAPwAAgD/a4xY+L/0xP1taMb2f0Ie+Efy0Pf9Bh70AAAAAAAAAAPNr7L22+2Q9YjyVPTDYUb6BX1K9NBENPQAAAAAAAAAArXAiPi7RaD8gCAq8UVWuvsDzwT0qC0i9AAAAAAAAAAAzYRU9QJ+KPw6Hh7wtwrm+vxawvFtAXr0AAAAAAAAAAM2RVL0yTtE+5zKrPB0IXr7jL5a8Drd3uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/3Vu2owzR0CUhpRSlIwBbJRL9IwBdJRHQK95KYYzi0h1fZQoaAZoCWgPQwjmz7cFyw9vQJSGlFKUaBVNZgFoFkdAr3k5YFJQL3V9lChoBmgJaA9DCKM9XkhHe3JAlIaUUpRoFU1uAWgWR0CveUhL5AQhdX2UKGgGaAloD0MIqKePwN8hckCUhpRSlGgVTTMBaBZHQK95X9kz41x1fZQoaAZoCWgPQwhC7iJM0Y5yQJSGlFKUaBVNUQFoFkdAr3l/Uz9CNXV9lChoBmgJaA9DCPTBMjZ0V01AlIaUUpRoFUvbaBZHQK95iIeo1k11fZQoaAZoCWgPQwi+huC4jOduQJSGlFKUaBVNSAFoFkdAr3mkK7ZnMHV9lChoBmgJaA9DCNGy7h+LVHJAlIaUUpRoFU1LAWgWR0CvedERSP2gdX2UKGgGaAloD0MIr8+c9SkIcECUhpRSlGgVTS8BaBZHQK96bDXvphZ1fZQoaAZoCWgPQwjDR8SUyHxxQJSGlFKUaBVL+WgWR0CvexWpQ1rJdX2UKGgGaAloD0MIS1tc4zNfcECUhpRSlGgVTSgBaBZHQK97iRSP2f11fZQoaAZoCWgPQwhIpkOnpxNwQJSGlFKUaBVNGQFoFkdAr3v8slLOA3V9lChoBmgJaA9DCNL7xtcedXBAlIaUUpRoFU0lAWgWR0CvfH4M4LkTdX2UKGgGaAloD0MIfNXKhJ8JcUCUhpRSlGgVTTsBaBZHQK996+gUUPB1fZQoaAZoCWgPQwhma32R0DdxQJSGlFKUaBVNIwFoFkdAr339WOp84XV9lChoBmgJaA9DCN1hE5l5PHJAlIaUUpRoFU1AAWgWR0Cvfgo5xR2sdX2UKGgGaAloD0MIRpiiXBpwbECUhpRSlGgVTSkBaBZHQK9+EJLuhK11fZQoaAZoCWgPQwiYvtcQ3MByQJSGlFKUaBVNQAFoFkdAr34d27nPmnV9lChoBmgJaA9DCC/f+rDez21AlIaUUpRoFU1LAWgWR0CvfmTyJ9ApdX2UKGgGaAloD0MIjdMQVXjJcUCUhpRSlGgVTTkBaBZHQK9+maVlf7d1fZQoaAZoCWgPQwjuQQjIVwBxQJSGlFKUaBVNZwFoFkdAr38D9MsYmHV9lChoBmgJaA9DCGfV52prrHFAlIaUUpRoFU1CAWgWR0CvfxHwob4rdX2UKGgGaAloD0MIy2Wjc/7+cUCUhpRSlGgVTb4BaBZHQK9/F++/QBx1fZQoaAZoCWgPQwgfZ5qwfURyQJSGlFKUaBVNOAFoFkdAr3+9JxvNvHV9lChoBmgJaA9DCA7Xag97IQbAlIaUUpRoFUvDaBZHQK9//EOy3Td1fZQoaAZoCWgPQwi9xFimHwxwQJSGlFKUaBVNTgFoFkdAr4FPHJcPfHV9lChoBmgJaA9DCPHYz2KpCWxAlIaUUpRoFU16AWgWR0CvgZmU4aP0dX2UKGgGaAloD0MIyXVTyms9T0CUhpRSlGgVS+ZoFkdAr4HTEBKcu3V9lChoBmgJaA9DCPCLS1XaAHFAlIaUUpRoFU1eAWgWR0CvghXHJcPfdX2UKGgGaAloD0MIz72HS452bkCUhpRSlGgVTSMBaBZHQK+C0qz7di51fZQoaAZoCWgPQwh7v9GOG2ZxQJSGlFKUaBVNKgFoFkdAr4Mee+VTrHV9lChoBmgJaA9DCKBU+3S8V3BAlIaUUpRoFU02AWgWR0CvgzzQE6kqdX2UKGgGaAloD0MIeEFEalqbbUCUhpRSlGgVTREBaBZHQK+DsdKdxyZ1fZQoaAZoCWgPQwhHWb+ZGNpxQJSGlFKUaBVNOAFoFkdAr4PiHCXQdHV9lChoBmgJaA9DCMy4qYHmwm5AlIaUUpRoFU1aAWgWR0Cvg/s7MgU2dX2UKGgGaAloD0MIGOyGbUuEcECUhpRSlGgVTVEBaBZHQK+EIeMhouh1fZQoaAZoCWgPQwjQm4pUmIFwQJSGlFKUaBVNawFoFkdAr4UvQ0GeMHV9lChoBmgJaA9DCNBiKZJvuXBAlIaUUpRoFU1FAWgWR0CvhVVOsT37dX2UKGgGaAloD0MIVz1gHjJwcECUhpRSlGgVTUwBaBZHQK+FzLVWjoJ1fZQoaAZoCWgPQwjIsfUMIZFyQJSGlFKUaBVNvwFoFkdAr4bByS3b23V9lChoBmgJaA9DCFwFMdB123JAlIaUUpRoFU03AWgWR0CvhurOJLuhdX2UKGgGaAloD0MIHAqfrYPncECUhpRSlGgVTS0BaBZHQK+HOmkWRA91fZQoaAZoCWgPQwgJ/Uy97mtxQJSGlFKUaBVNRgFoFkdAr4dthoduHnV9lChoBmgJaA9DCH2wjA3d/G9AlIaUUpRoFU1YAWgWR0CviD8E/0NCdX2UKGgGaAloD0MIJa/OMeDHcECUhpRSlGgVTQUBaBZHQK+IUPZqVQh1fZQoaAZoCWgPQwiUMNP2r6djQJSGlFKUaBVN6ANoFkdAr5IIkVvddnV9lChoBmgJaA9DCBsPttgtp3BAlIaUUpRoFU1LAWgWR0CvkggqEvkBdX2UKGgGaAloD0MI9YO6SKEBcUCUhpRSlGgVTUIBaBZHQK+SOTvAoG91fZQoaAZoCWgPQwjtRh/zwXpwQJSGlFKUaBVNSQFoFkdAr5KY5ggHNXV9lChoBmgJaA9DCCujkc+reG9AlIaUUpRoFU0rAWgWR0CvktO5z5oHdX2UKGgGaAloD0MIK2wGuKBTb0CUhpRSlGgVTSkBaBZHQK+TBGFzuF91fZQoaAZoCWgPQwg66X3ja7tuQJSGlFKUaBVNOwFoFkdAr5MYtJ4B3nV9lChoBmgJaA9DCGSxTSoa+UVAlIaUUpRoFUv0aBZHQK+TJoEjgQ91fZQoaAZoCWgPQwhFSUikbRRyQJSGlFKUaBVNPQFoFkdAr5S653C9AXV9lChoBmgJaA9DCB+EgHwJpURAlIaUUpRoFUvkaBZHQK+VGRKYiPh1fZQoaAZoCWgPQwh6AIv8ehttQJSGlFKUaBVNbAFoFkdAr5aAy44IbHV9lChoBmgJaA9DCFYt6SjHV3BAlIaUUpRoFU1BAWgWR0Cvlvh+vyLAdX2UKGgGaAloD0MIW5caoR/ybECUhpRSlGgVTUsBaBZHQK+W/9VFQVN1fZQoaAZoCWgPQwj1gk9z8iBPQJSGlFKUaBVLw2gWR0Cvl2BUaQ3hdX2UKGgGaAloD0MIjEl/L4XVR0CUhpRSlGgVS95oFkdAr5fLVe8f3nV9lChoBmgJaA9DCMCV7NjIoHFAlIaUUpRoFU1IAWgWR0Cvl9u0CzTndX2UKGgGaAloD0MIDFwea8aJckCUhpRSlGgVTSsBaBZHQK+YaxtYSxt1fZQoaAZoCWgPQwh1O/vKQz5wQJSGlFKUaBVNOAFoFkdAr5ilA3T/hnV9lChoBmgJaA9DCLfte9QfLXJAlIaUUpRoFU0dAWgWR0CvmK2IwdsBdX2UKGgGaAloD0MIOgK4WfyhcECUhpRSlGgVTS4BaBZHQK+ZAfuCwr11fZQoaAZoCWgPQwgPuK6YUZVwQJSGlFKUaBVNOwFoFkdAr5lkwvg3tXV9lChoBmgJaA9DCOpA1lNre3FAlIaUUpRoFU0bAWgWR0CvmXuyNXHSdX2UKGgGaAloD0MINZvHYfDicUCUhpRSlGgVTVEBaBZHQK+aAe18b711fZQoaAZoCWgPQwiV0jO9RH9xQJSGlFKUaBVNdQFoFkdAr5sYmu1WsHV9lChoBmgJaA9DCGk7pu4KmHFAlIaUUpRoFU0MAWgWR0Cvmx6M72csdX2UKGgGaAloD0MIEmxc/67/bkCUhpRSlGgVTTkBaBZHQK+bsfs/pt91fZQoaAZoCWgPQwhOt+wQvxJxQJSGlFKUaBVL/mgWR0Cvm/hAOavzdX2UKGgGaAloD0MIgNjSo6k4RkCUhpRSlGgVS+FoFkdAr5yVE9dNWXV9lChoBmgJaA9DCMMRpFKsC3JAlIaUUpRoFUv2aBZHQK+coQsf7rN1fZQoaAZoCWgPQwh/SwD+6dJyQJSGlFKUaBVNMAFoFkdAr52CjxkNF3V9lChoBmgJaA9DCG+gwDt5g29AlIaUUpRoFU02AWgWR0Cvnaz5wfhddX2UKGgGaAloD0MIon4XtmYibECUhpRSlGgVTSgBaBZHQK+eGgg5imV1fZQoaAZoCWgPQwi366UpwkRxQJSGlFKUaBVNJQFoFkdAr57XaYeDF3V9lChoBmgJaA9DCGngRzVsd3BAlIaUUpRoFU0vAWgWR0CvntZVn27GdX2UKGgGaAloD0MI1ArT9xrzbkCUhpRSlGgVTSIBaBZHQK+fIscyWRl1fZQoaAZoCWgPQwjEswQZAQ5SQJSGlFKUaBVL+mgWR0Cvn3LGipNsdX2UKGgGaAloD0MIdsQhG0ivb0CUhpRSlGgVTUQBaBZHQK+feG34Kx91fZQoaAZoCWgPQwgMPPce7p9xQJSGlFKUaBVNKQFoFkdAr5+srZrYXnV9lChoBmgJaA9DCCXqBZ+mU3JAlIaUUpRoFU0nAWgWR0Cvn7r1mJ3xdX2UKGgGaAloD0MIkuo7v2iucUCUhpRSlGgVTQcBaBZHQK+hpj/dZaF1fZQoaAZoCWgPQwjfpdQlI0ZwQJSGlFKUaBVNOgFoFkdAr6Hbp3X7L3V9lChoBmgJaA9DCGb5ugz/kHJAlIaUUpRoFU0jAWgWR0CvofYjKPn0dX2UKGgGaAloD0MIk+LjE7LLcUCUhpRSlGgVTWIBaBZHQK+idhybQTp1fZQoaAZoCWgPQwgyk6gX/LZyQJSGlFKUaBVNMgFoFkdAr6Lis+3YtnV9lChoBmgJaA9DCFmjHqJR429AlIaUUpRoFU0+AWgWR0CvowxNqQA/dX2UKGgGaAloD0MIR+f8FMdobUCUhpRSlGgVTRQBaBZHQK+jeIRh+fB1fZQoaAZoCWgPQwgN/+kGCoJxQJSGlFKUaBVNMAFoFkdAr6N/wPRRdnV9lChoBmgJaA9DCNhK6C6JVXBAlIaUUpRoFU00AWgWR0Cvo61wYLssdX2UKGgGaAloD0MIpDhHHZ0mcUCUhpRSlGgVTSUBaBZHQK+kfXbM5fd1fZQoaAZoCWgPQwipv15hwb1wQJSGlFKUaBVNSAFoFkdAr6ThBkZrHnV9lChoBmgJaA9DCOQViJ6UN25AlIaUUpRoFU0sAWgWR0CvpOLux8lYdX2UKGgGaAloD0MI/+kGCrxacECUhpRSlGgVTVQBaBZHQK+lD5ckdFR1fZQoaAZoCWgPQwhTdY9sbjxxQJSGlFKUaBVNKgFoFkdAr6UX+sHSnnV9lChoBmgJaA9DCCYbD7YYQnBAlIaUUpRoFU0+AWgWR0CvpVREnb7CdX2UKGgGaAloD0MI6nWLwJhocUCUhpRSlGgVTVABaBZHQK+latqYZ2p1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_ppo1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1a0ac544ff01ed1b86561e6c47ea94db721dc34cbacea579acf17b1c77d6d3d
3
+ size 147408
lunar_ppo1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
lunar_ppo1/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f54c207e700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f54c207e790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f54c207e820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f54c207e8b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f54c207e940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f54c207e9d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f54c207ea60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f54c207eaf0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f54c207eb80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f54c207ec10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f54c207eca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f54c207ed30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f54c207b4e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673403148086775218,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABcVrzDVTS6eHyQOXcUMDMZi5m77l+ouAAAgD8AAIA/TQLgPbgZLD+Wfhu9wKhzvmFTJD0hREA9AAAAAAAAAABmKfa9HZBwPqYtQj7iKBW+qVkhPdtqnz0AAAAAAAAAAIAeZ73oa84+7+6ovamlVb44QNK93gHnPAAAAAAAAAAATdnYvYkBVz3+EA0+xz59vkcTWT2eq6S7AAAAAAAAAADYRJO+D9EQP+1Z0D38Ooa+Q5muvUSVuz0AAAAAAAAAAOa9Nz4tFBQ/u3rVveAGvr6M/tA8jh54PQAAAAAAAAAAQBu2PXv+qrpTPF85BAM6tmbPALowXn64AAAAAAAAAABa4WA+yyhiP8bOaD35qpy+6HtBPo6zAb4AAAAAAAAAABr6OT2uFbC6UL+Os8fQ8a5YuXY5GiS7MwAAgD8AAIA/ZhJnPQ8kIbxwxr89ciPpvTLi/rxAcFA+AACAPwAAgD/a4xY+L/0xP1taMb2f0Ie+Efy0Pf9Bh70AAAAAAAAAAPNr7L22+2Q9YjyVPTDYUb6BX1K9NBENPQAAAAAAAAAArXAiPi7RaD8gCAq8UVWuvsDzwT0qC0i9AAAAAAAAAAAzYRU9QJ+KPw6Hh7wtwrm+vxawvFtAXr0AAAAAAAAAAM2RVL0yTtE+5zKrPB0IXr7jL5a8Drd3uwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/3Vu2owzR0CUhpRSlIwBbJRL9IwBdJRHQK95KYYzi0h1fZQoaAZoCWgPQwjmz7cFyw9vQJSGlFKUaBVNZgFoFkdAr3k5YFJQL3V9lChoBmgJaA9DCKM9XkhHe3JAlIaUUpRoFU1uAWgWR0CveUhL5AQhdX2UKGgGaAloD0MIqKePwN8hckCUhpRSlGgVTTMBaBZHQK95X9kz41x1fZQoaAZoCWgPQwhC7iJM0Y5yQJSGlFKUaBVNUQFoFkdAr3l/Uz9CNXV9lChoBmgJaA9DCPTBMjZ0V01AlIaUUpRoFUvbaBZHQK95iIeo1k11fZQoaAZoCWgPQwi+huC4jOduQJSGlFKUaBVNSAFoFkdAr3mkK7ZnMHV9lChoBmgJaA9DCNGy7h+LVHJAlIaUUpRoFU1LAWgWR0CvedERSP2gdX2UKGgGaAloD0MIr8+c9SkIcECUhpRSlGgVTS8BaBZHQK96bDXvphZ1fZQoaAZoCWgPQwjDR8SUyHxxQJSGlFKUaBVL+WgWR0CvexWpQ1rJdX2UKGgGaAloD0MIS1tc4zNfcECUhpRSlGgVTSgBaBZHQK97iRSP2f11fZQoaAZoCWgPQwhIpkOnpxNwQJSGlFKUaBVNGQFoFkdAr3v8slLOA3V9lChoBmgJaA9DCNL7xtcedXBAlIaUUpRoFU0lAWgWR0CvfH4M4LkTdX2UKGgGaAloD0MIfNXKhJ8JcUCUhpRSlGgVTTsBaBZHQK996+gUUPB1fZQoaAZoCWgPQwhma32R0DdxQJSGlFKUaBVNIwFoFkdAr339WOp84XV9lChoBmgJaA9DCN1hE5l5PHJAlIaUUpRoFU1AAWgWR0Cvfgo5xR2sdX2UKGgGaAloD0MIRpiiXBpwbECUhpRSlGgVTSkBaBZHQK9+EJLuhK11fZQoaAZoCWgPQwiYvtcQ3MByQJSGlFKUaBVNQAFoFkdAr34d27nPmnV9lChoBmgJaA9DCC/f+rDez21AlIaUUpRoFU1LAWgWR0CvfmTyJ9ApdX2UKGgGaAloD0MIjdMQVXjJcUCUhpRSlGgVTTkBaBZHQK9+maVlf7d1fZQoaAZoCWgPQwjuQQjIVwBxQJSGlFKUaBVNZwFoFkdAr38D9MsYmHV9lChoBmgJaA9DCGfV52prrHFAlIaUUpRoFU1CAWgWR0CvfxHwob4rdX2UKGgGaAloD0MIy2Wjc/7+cUCUhpRSlGgVTb4BaBZHQK9/F++/QBx1fZQoaAZoCWgPQwgfZ5qwfURyQJSGlFKUaBVNOAFoFkdAr3+9JxvNvHV9lChoBmgJaA9DCA7Xag97IQbAlIaUUpRoFUvDaBZHQK9//EOy3Td1fZQoaAZoCWgPQwi9xFimHwxwQJSGlFKUaBVNTgFoFkdAr4FPHJcPfHV9lChoBmgJaA9DCPHYz2KpCWxAlIaUUpRoFU16AWgWR0CvgZmU4aP0dX2UKGgGaAloD0MIyXVTyms9T0CUhpRSlGgVS+ZoFkdAr4HTEBKcu3V9lChoBmgJaA9DCPCLS1XaAHFAlIaUUpRoFU1eAWgWR0CvghXHJcPfdX2UKGgGaAloD0MIz72HS452bkCUhpRSlGgVTSMBaBZHQK+C0qz7di51fZQoaAZoCWgPQwh7v9GOG2ZxQJSGlFKUaBVNKgFoFkdAr4Mee+VTrHV9lChoBmgJaA9DCKBU+3S8V3BAlIaUUpRoFU02AWgWR0CvgzzQE6kqdX2UKGgGaAloD0MIeEFEalqbbUCUhpRSlGgVTREBaBZHQK+DsdKdxyZ1fZQoaAZoCWgPQwhHWb+ZGNpxQJSGlFKUaBVNOAFoFkdAr4PiHCXQdHV9lChoBmgJaA9DCMy4qYHmwm5AlIaUUpRoFU1aAWgWR0Cvg/s7MgU2dX2UKGgGaAloD0MIGOyGbUuEcECUhpRSlGgVTVEBaBZHQK+EIeMhouh1fZQoaAZoCWgPQwjQm4pUmIFwQJSGlFKUaBVNawFoFkdAr4UvQ0GeMHV9lChoBmgJaA9DCNBiKZJvuXBAlIaUUpRoFU1FAWgWR0CvhVVOsT37dX2UKGgGaAloD0MIVz1gHjJwcECUhpRSlGgVTUwBaBZHQK+FzLVWjoJ1fZQoaAZoCWgPQwjIsfUMIZFyQJSGlFKUaBVNvwFoFkdAr4bByS3b23V9lChoBmgJaA9DCFwFMdB123JAlIaUUpRoFU03AWgWR0CvhurOJLuhdX2UKGgGaAloD0MIHAqfrYPncECUhpRSlGgVTS0BaBZHQK+HOmkWRA91fZQoaAZoCWgPQwgJ/Uy97mtxQJSGlFKUaBVNRgFoFkdAr4dthoduHnV9lChoBmgJaA9DCH2wjA3d/G9AlIaUUpRoFU1YAWgWR0CviD8E/0NCdX2UKGgGaAloD0MIJa/OMeDHcECUhpRSlGgVTQUBaBZHQK+IUPZqVQh1fZQoaAZoCWgPQwiUMNP2r6djQJSGlFKUaBVN6ANoFkdAr5IIkVvddnV9lChoBmgJaA9DCBsPttgtp3BAlIaUUpRoFU1LAWgWR0CvkggqEvkBdX2UKGgGaAloD0MI9YO6SKEBcUCUhpRSlGgVTUIBaBZHQK+SOTvAoG91fZQoaAZoCWgPQwjtRh/zwXpwQJSGlFKUaBVNSQFoFkdAr5KY5ggHNXV9lChoBmgJaA9DCCujkc+reG9AlIaUUpRoFU0rAWgWR0CvktO5z5oHdX2UKGgGaAloD0MIK2wGuKBTb0CUhpRSlGgVTSkBaBZHQK+TBGFzuF91fZQoaAZoCWgPQwg66X3ja7tuQJSGlFKUaBVNOwFoFkdAr5MYtJ4B3nV9lChoBmgJaA9DCGSxTSoa+UVAlIaUUpRoFUv0aBZHQK+TJoEjgQ91fZQoaAZoCWgPQwhFSUikbRRyQJSGlFKUaBVNPQFoFkdAr5S653C9AXV9lChoBmgJaA9DCB+EgHwJpURAlIaUUpRoFUvkaBZHQK+VGRKYiPh1fZQoaAZoCWgPQwh6AIv8ehttQJSGlFKUaBVNbAFoFkdAr5aAy44IbHV9lChoBmgJaA9DCFYt6SjHV3BAlIaUUpRoFU1BAWgWR0Cvlvh+vyLAdX2UKGgGaAloD0MIW5caoR/ybECUhpRSlGgVTUsBaBZHQK+W/9VFQVN1fZQoaAZoCWgPQwj1gk9z8iBPQJSGlFKUaBVLw2gWR0Cvl2BUaQ3hdX2UKGgGaAloD0MIjEl/L4XVR0CUhpRSlGgVS95oFkdAr5fLVe8f3nV9lChoBmgJaA9DCMCV7NjIoHFAlIaUUpRoFU1IAWgWR0Cvl9u0CzTndX2UKGgGaAloD0MIDFwea8aJckCUhpRSlGgVTSsBaBZHQK+YaxtYSxt1fZQoaAZoCWgPQwh1O/vKQz5wQJSGlFKUaBVNOAFoFkdAr5ilA3T/hnV9lChoBmgJaA9DCLfte9QfLXJAlIaUUpRoFU0dAWgWR0CvmK2IwdsBdX2UKGgGaAloD0MIOgK4WfyhcECUhpRSlGgVTS4BaBZHQK+ZAfuCwr11fZQoaAZoCWgPQwgPuK6YUZVwQJSGlFKUaBVNOwFoFkdAr5lkwvg3tXV9lChoBmgJaA9DCOpA1lNre3FAlIaUUpRoFU0bAWgWR0CvmXuyNXHSdX2UKGgGaAloD0MINZvHYfDicUCUhpRSlGgVTVEBaBZHQK+aAe18b711fZQoaAZoCWgPQwiV0jO9RH9xQJSGlFKUaBVNdQFoFkdAr5sYmu1WsHV9lChoBmgJaA9DCGk7pu4KmHFAlIaUUpRoFU0MAWgWR0Cvmx6M72csdX2UKGgGaAloD0MIEmxc/67/bkCUhpRSlGgVTTkBaBZHQK+bsfs/pt91fZQoaAZoCWgPQwhOt+wQvxJxQJSGlFKUaBVL/mgWR0Cvm/hAOavzdX2UKGgGaAloD0MIgNjSo6k4RkCUhpRSlGgVS+FoFkdAr5yVE9dNWXV9lChoBmgJaA9DCMMRpFKsC3JAlIaUUpRoFUv2aBZHQK+coQsf7rN1fZQoaAZoCWgPQwh/SwD+6dJyQJSGlFKUaBVNMAFoFkdAr52CjxkNF3V9lChoBmgJaA9DCG+gwDt5g29AlIaUUpRoFU02AWgWR0Cvnaz5wfhddX2UKGgGaAloD0MIon4XtmYibECUhpRSlGgVTSgBaBZHQK+eGgg5imV1fZQoaAZoCWgPQwi366UpwkRxQJSGlFKUaBVNJQFoFkdAr57XaYeDF3V9lChoBmgJaA9DCGngRzVsd3BAlIaUUpRoFU0vAWgWR0CvntZVn27GdX2UKGgGaAloD0MI1ArT9xrzbkCUhpRSlGgVTSIBaBZHQK+fIscyWRl1fZQoaAZoCWgPQwjEswQZAQ5SQJSGlFKUaBVL+mgWR0Cvn3LGipNsdX2UKGgGaAloD0MIdsQhG0ivb0CUhpRSlGgVTUQBaBZHQK+feG34Kx91fZQoaAZoCWgPQwgMPPce7p9xQJSGlFKUaBVNKQFoFkdAr5+srZrYXnV9lChoBmgJaA9DCCXqBZ+mU3JAlIaUUpRoFU0nAWgWR0Cvn7r1mJ3xdX2UKGgGaAloD0MIkuo7v2iucUCUhpRSlGgVTQcBaBZHQK+hpj/dZaF1fZQoaAZoCWgPQwjfpdQlI0ZwQJSGlFKUaBVNOgFoFkdAr6Hbp3X7L3V9lChoBmgJaA9DCGb5ugz/kHJAlIaUUpRoFU0jAWgWR0CvofYjKPn0dX2UKGgGaAloD0MIk+LjE7LLcUCUhpRSlGgVTWIBaBZHQK+idhybQTp1fZQoaAZoCWgPQwgyk6gX/LZyQJSGlFKUaBVNMgFoFkdAr6Lis+3YtnV9lChoBmgJaA9DCFmjHqJR429AlIaUUpRoFU0+AWgWR0CvowxNqQA/dX2UKGgGaAloD0MIR+f8FMdobUCUhpRSlGgVTRQBaBZHQK+jeIRh+fB1fZQoaAZoCWgPQwgN/+kGCoJxQJSGlFKUaBVNMAFoFkdAr6N/wPRRdnV9lChoBmgJaA9DCNhK6C6JVXBAlIaUUpRoFU00AWgWR0Cvo61wYLssdX2UKGgGaAloD0MIpDhHHZ0mcUCUhpRSlGgVTSUBaBZHQK+kfXbM5fd1fZQoaAZoCWgPQwipv15hwb1wQJSGlFKUaBVNSAFoFkdAr6ThBkZrHnV9lChoBmgJaA9DCOQViJ6UN25AlIaUUpRoFU0sAWgWR0CvpOLux8lYdX2UKGgGaAloD0MI/+kGCrxacECUhpRSlGgVTVQBaBZHQK+lD5ckdFR1fZQoaAZoCWgPQwhTdY9sbjxxQJSGlFKUaBVNKgFoFkdAr6UX+sHSnnV9lChoBmgJaA9DCCYbD7YYQnBAlIaUUpRoFU0+AWgWR0CvpVREnb7CdX2UKGgGaAloD0MI6nWLwJhocUCUhpRSlGgVTVABaBZHQK+latqYZ2p1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 252,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
lunar_ppo1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:640a26ed22eec23d13bcd776adf92b02840b2926f5ed4c747933fd204ac93e86
3
+ size 87929
lunar_ppo1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecaff199ecc95590bf1ddeca942b427dd5e7cacc1d60fcf606e01c4517a3f300
3
+ size 43393
lunar_ppo1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_ppo1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (220 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 253.76622542730865, "std_reward": 22.769265954865066, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-11T02:49:39.936414"}