File size: 6,683 Bytes
f3b69ae
14bacdf
 
e5ad254
440e7a8
 
14bacdf
 
 
440e7a8
 
 
382418f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440e7a8
 
 
 
 
 
14bacdf
1050739
14bacdf
0b45748
1050739
 
0b45748
 
 
 
 
 
14bacdf
1050739
14bacdf
440e7a8
1050739
 
440e7a8
 
 
 
 
 
14bacdf
ae22d09
14bacdf
440e7a8
 
14bacdf
f3b69ae
440e7a8
 
c3693da
440e7a8
e74a696
 
382418f
 
 
440e7a8
 
 
 
 
24ecff1
440e7a8
 
 
 
382418f
 
 
 
 
 
 
 
440e7a8
674a19b
 
382418f
674a19b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3693da
 
 
 
 
 
 
 
 
 
 
 
 
440e7a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
language:
- en
license: mit
base_model:
- mistralai/Mistral-7B-v0.1
datasets:
- argilla/ultrafeedback-binarized-preferences-cleaned
pipeline_tag: text-generation
model-index:
- name: Mistral-ORPO-β
  results:
  # AI2 Reasoning Challenge (25-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 61.18
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # HellaSwag (10-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
       - type: acc_norm
         name: normalized accuracy
         value: 84.03
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # TruthfulQA (0-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
       - type: mc2
         value: 47.69
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # GSM8k (5-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 39.8
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # MMLU (5-Shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 63.26
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta

  # Winogrande (5-shot)
  - task: 
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
       - type: acc
         name: accuracy
         value: 79.24
    source:
      name: Open LLM Leaderboard
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaist-ai%2Fmistral-orpo-beta
  - task:
      type: text-generation
    dataset:
      name: AlpacaEval 1
      type: AlpacaEval
    metrics:
    - type: AlpacaEval 1.0
      value: 91.16%
      name: Win Rate
    source:
      url: https://tatsu-lab.github.io/alpaca_eval/
      name: Leaderboard
  - task:
      type: text-generation
    dataset:
      name: AlpacaEval 2
      type: AlpacaEval
    metrics:
    - type: AlpacaEval 2.0
      value: 12.57%
      name: Win Rate
    source:
      url: https://tatsu-lab.github.io/alpaca_eval/
      name: Leaderboard
  - task:
      type: text-generation
    dataset:
      name: MT-Bench
      type: MT-Bench
    metrics:
    - type: MT-Bench
      value: 7.322
      name: Score
    source:
      url: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/
      name: self-reported
---
# **Mistral-ORPO-β (7B)**

**Mistral-ORPO** is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the *[odds ratio preference optimization (ORPO)](https://arxiv.org/abs/2403.07691)*. With ORPO, the model directly learns the preference without the supervised fine-tuning warmup phase. **Mistral-ORPO-β** is fine-tuned exclusively on the 61k instances of the cleaned version of UltraFeedback, [argilla/ultrafeedback-binarized-preferences-cleaned](https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned), by [Argilla](https://huggingface.co/argilla).

- **Github Repository**: https://github.com/xfactlab/orpo

## 👍 **Model Performance**

### 1) AlpacaEval & MT-Bench

|Model Name|Size|Align|MT-Bench|AlpacaEval 1.0|AlpacaEval 2.0|
|:--------|:--------------:|:--------------:|:-------------------:|:------------:|:------------:|
|**Mistral-<tt>ORPO</tt>-⍺**|7B|<tt>ORPO</tt>|7.23|87.92|11.33|
|**Mistral-<tt>ORPO</tt>-β**|7B|<tt>ORPO</tt>|7.32|91.41|12.20|
|Zephyr β |7B|DPO|7.34|90.60|10.99|
|TULU-2-DPO |13B|DPO|7.00|89.5|10.12|
|Llama-2-Chat |7B|RLHF|6.27|71.37|4.96|
|Llama-2-Chat |13B|RLHF|6.65|81.09|7.70|

### 2) IFEval

| **Model Type**     | **Prompt-Strict** | **Prompt-Loose** | **Inst-Strict** | **Inst-Loose** |
|--------------------|:-----------------:|:----------------:|:---------------:|:--------------:|
| **Mistral-ORPO-⍺** |       0.5009      |      0.5083      |      0.5995     |     0.6163     |
| **Mistral-ORPO-β** |       0.5287      |      0.5564      |      0.6355     |     0.6619     |

## 🗺️ **MT-Bench by Category**

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6415c043486c7c9a5d151583/1Ifpt0ljCfJPEoZAqlqqy.png)

## 🖥️ **Inference**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("kaist-ai/mistral-orpo-beta")
tokenizer = AutoTokenizer.from_pretrained("kaist-ai/mistral-orpo-beta")

# Apply chat template
query = [{'role': 'user', 'content': 'Hi! How are you doing?'}]
prompt = tokenizer.apply_chat_template(query, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors='pt')

# Generation with specific configurations
output = model.generate(
  **inputs,
  max_new_tokens=128,
  do_sample=True,
  temperature=0.7
)
response = tokenizer.batch_decode(output)

#<|user|>
#Hi! How are you doing?</s>
#<|assistant|>
#I'm doing well, thank you! How are you?</s>
```

## 📎 **Citation**

```
@misc{hong2024orpo,
      title={ORPO: Monolithic Preference Optimization without Reference Model}, 
      author={Jiwoo Hong and Noah Lee and James Thorne},
      year={2024},
      eprint={2403.07691},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```