File size: 73,096 Bytes
95259e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 12,
"id": "9b5d89c1",
"metadata": {
"collapsed": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Defaulting to user installation because normal site-packages is not writeable\n",
"Requirement already satisfied: tensorflow in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (2.17.0)\n",
"Requirement already satisfied: librosa in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (0.10.2.post1)\n",
"Requirement already satisfied: numpy in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (1.26.4)\n",
"Requirement already satisfied: pandas in c:\\programdata\\anaconda3\\lib\\site-packages (1.4.2)\n",
"Requirement already satisfied: matplotlib in c:\\programdata\\anaconda3\\lib\\site-packages (3.5.1)\n",
"Requirement already satisfied: scikit-learn in c:\\programdata\\anaconda3\\lib\\site-packages (1.0.2)\n",
"Requirement already satisfied: resampy in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (0.4.3)\n",
"Requirement already satisfied: xgboost in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (2.1.1)\n",
"Requirement already satisfied: tensorflow-intel==2.17.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow) (2.17.0)\n",
"Requirement already satisfied: tensorboard<2.18,>=2.17 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.17.0)\n",
"Requirement already satisfied: absl-py>=1.0.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.1.0)\n",
"Requirement already satisfied: flatbuffers>=24.3.25 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (24.3.25)\n",
"Requirement already satisfied: six>=1.12.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.16.0)\n",
"Requirement already satisfied: keras>=3.2.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.4.1)\n",
"Requirement already satisfied: packaging in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (21.3)\n",
"Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.4.0)\n",
"Requirement already satisfied: wrapt>=1.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.12.1)\n",
"Requirement already satisfied: termcolor>=1.1.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.4.0)\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.65.4)\n",
"Requirement already satisfied: libclang>=13.0.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (18.1.1)\n",
"Requirement already satisfied: astunparse>=1.6.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.6.3)\n",
"Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.6.0)\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.3.0)\n",
"Requirement already satisfied: requests<3,>=2.21.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.27.1)\n",
"Requirement already satisfied: typing-extensions>=3.6.6 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (4.12.2)\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (4.25.4)\n",
"Requirement already satisfied: h5py>=3.10.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.11.0)\n",
"Requirement already satisfied: setuptools in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (61.2.0)\n",
"Requirement already satisfied: google-pasta>=0.1.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.2.0)\n",
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.31.0)\n",
"Requirement already satisfied: pooch>=1.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (1.8.2)\n",
"Requirement already satisfied: scipy>=1.2.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (1.13.1)\n",
"Requirement already satisfied: lazy-loader>=0.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.4)\n",
"Requirement already satisfied: numba>=0.51.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.60.0)\n",
"Requirement already satisfied: soxr>=0.3.2 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.4.0)\n",
"Requirement already satisfied: audioread>=2.1.9 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (3.0.1)\n",
"Requirement already satisfied: decorator>=4.3.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from librosa) (5.1.1)\n",
"Requirement already satisfied: soundfile>=0.12.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.12.1)\n",
"Requirement already satisfied: msgpack>=1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from librosa) (1.0.2)\n",
"Requirement already satisfied: joblib>=0.14 in c:\\programdata\\anaconda3\\lib\\site-packages (from librosa) (1.1.0)\n",
"Requirement already satisfied: python-dateutil>=2.8.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2021.3)\n",
"Requirement already satisfied: cycler>=0.10 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (0.11.0)\n",
"Requirement already satisfied: pillow>=6.2.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (9.0.1)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (1.3.2)\n",
"Requirement already satisfied: fonttools>=4.22.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (4.25.0)\n",
"Requirement already satisfied: pyparsing>=2.2.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (3.0.4)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (2.2.0)\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from astunparse>=1.6.0->tensorflow-intel==2.17.0->tensorflow) (0.37.1)\n",
"Requirement already satisfied: rich in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (13.7.1)\n",
"Requirement already satisfied: namex in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.0.8)\n",
"Requirement already satisfied: optree in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.12.1)\n",
"Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from numba>=0.51.0->librosa) (0.43.0)\n",
"Requirement already satisfied: platformdirs>=2.5.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from pooch>=1.1->librosa) (4.2.2)\n",
"Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2021.10.8)\n",
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (1.26.9)\n",
"Requirement already satisfied: idna<4,>=2.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (3.3)\n",
"Requirement already satisfied: cffi>=1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from soundfile>=0.12.1->librosa) (1.15.0)\n",
"Requirement already satisfied: pycparser in c:\\programdata\\anaconda3\\lib\\site-packages (from cffi>=1.0->soundfile>=0.12.1->librosa) (2.21)\n",
"Requirement already satisfied: markdown>=2.6.8 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (3.3.4)\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (0.7.2)\n",
"Requirement already satisfied: werkzeug>=1.0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (2.0.3)\n",
"Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (3.0.0)\n",
"Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (2.18.0)\n",
"Requirement already satisfied: mdurl~=0.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.1.2)\n",
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"pip install tensorflow librosa numpy pandas matplotlib scikit-learn resampy xgboost"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "2317d7f3",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\MSI\\AppData\\Local\\Temp\\ipykernel_2700\\1497878668.py:24: UserWarning: PySoundFile failed. Trying audioread instead.\n",
" audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Error encountered while parsing file: soundclips\\discomfort\\Minta Gendong AUD-20150509-WA0000.wav, \n",
"Feature extraction failed for file: soundclips\\discomfort\\Minta Gendong AUD-20150509-WA0000.wav\n",
"Error encountered while parsing file: soundclips\\discomfort\\recordgntipopok.wav, \n",
"Feature extraction failed for file: soundclips\\discomfort\\recordgntipopok.wav\n",
"Error encountered while parsing file: soundclips\\hungry\\Lapar AUD-20150509-WA0001.wav, \n",
"Feature extraction failed for file: soundclips\\hungry\\Lapar AUD-20150509-WA0001.wav\n",
"Error encountered while parsing file: soundclips\\hungry\\record-baby-1 cari puting.wav, \n",
"Feature extraction failed for file: soundclips\\hungry\\record-baby-1 cari puting.wav\n",
"Error encountered while parsing file: soundclips\\hungry\\record-baby2 puting dilepas.wav, \n",
"Feature extraction failed for file: soundclips\\hungry\\record-baby2 puting dilepas.wav\n",
"Error encountered while parsing file: soundclips\\tired\\Bangun Tidur AUD-20150509-WA0002.wav, \n",
"Feature extraction failed for file: soundclips\\tired\\Bangun Tidur AUD-20150509-WA0002.wav\n"
]
}
],
"source": [
"import os\n",
"import numpy as np\n",
"import librosa\n",
"import pandas as pd\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.preprocessing import LabelEncoder\n",
"from tensorflow.keras.utils import to_categorical\n",
"import xgboost as xgb\n",
"from sklearn.metrics import accuracy_score\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Dropout, Activation\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.callbacks import ModelCheckpoint\n",
"\n",
"# Path to the dataset\n",
"dataset_path = 'soundclips'\n",
"\n",
"# List of categories\n",
"categories = ['belly_pain', 'burping', 'discomfort', 'hungry', 'tired']\n",
"\n",
"# Function to extract features from audio files\n",
"def extract_features(file_name):\n",
" try:\n",
" audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')\n",
" mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)\n",
" mfccs_scaled = np.mean(mfccs.T, axis=0)\n",
" \n",
" return mfccs_scaled\n",
" except Exception as e:\n",
" print(f\"Error encountered while parsing file: {file_name}, {e}\")\n",
" return None\n",
"\n",
"# Create DataFrame to hold features and labels\n",
"features = []\n",
"labels = []\n",
"\n",
"# Iterate through each category\n",
"for category in categories:\n",
" category_path = os.path.join(dataset_path, category)\n",
" if not os.path.exists(category_path):\n",
" print(f\"Directory does not exist: {category_path}\")\n",
" continue\n",
" \n",
" for file in os.listdir(category_path):\n",
" file_path = os.path.join(category_path, file)\n",
" data = extract_features(file_path)\n",
" if data is not None and len(data) > 0:\n",
" features.append(data)\n",
" labels.append(category)\n",
" else:\n",
" print(f\"Feature extraction failed for file: {file_path}\")\n",
"\n",
"# Convert to numpy arrays\n",
"features = np.array(features)\n",
"labels = np.array(labels)\n",
"\n",
"# Check if features array is empty\n",
"if features.size == 0:\n",
" raise ValueError(\"No features extracted. Please check the dataset and ensure audio files are present and readable.\")\n",
"\n",
"# Encode the labels\n",
"le = LabelEncoder()\n",
"labels_encoded = le.fit_transform(labels)\n",
"labels_categorical = to_categorical(labels_encoded)\n",
"\n",
"# Split the dataset\n",
"X_train, X_test, y_train, y_test = train_test_split(features, labels_categorical, test_size=0.2, random_state=42)\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "955d889d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/100\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\MSI\\AppData\\Roaming\\Python\\Python39\\site-packages\\keras\\src\\layers\\core\\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
" super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m9s\u001b[0m 770ms/step - accuracy: 0.1250 - loss: 92.2737\n",
"Epoch 1: val_loss improved from inf to 11.10916, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 14ms/step - accuracy: 0.2303 - loss: 55.0404 - val_accuracy: 0.7282 - val_loss: 11.1092\n",
"Epoch 2/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.7500 - loss: 10.0197\n",
"Epoch 2: val_loss improved from 11.10916 to 8.67415, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7144 - loss: 12.5967 - val_accuracy: 0.7282 - val_loss: 8.6742\n",
"Epoch 3/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6875 - loss: 17.6288\n",
"Epoch 3: val_loss improved from 8.67415 to 4.57907, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6595 - loss: 14.6687 - val_accuracy: 0.7282 - val_loss: 4.5791\n",
"Epoch 4/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.6875 - loss: 7.3426\n",
"Epoch 4: val_loss improved from 4.57907 to 3.37468, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6161 - loss: 8.2100 - val_accuracy: 0.7282 - val_loss: 3.3747\n",
"Epoch 5/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.5938 - loss: 6.5427\n",
"Epoch 5: val_loss improved from 3.37468 to 2.81896, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6420 - loss: 6.6541 - val_accuracy: 0.7282 - val_loss: 2.8190\n",
"Epoch 6/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7500 - loss: 4.3348\n",
"Epoch 6: val_loss improved from 2.81896 to 2.11174, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6473 - loss: 5.6300 - val_accuracy: 0.7282 - val_loss: 2.1117\n",
"Epoch 7/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.5312 - loss: 8.7231\n",
"Epoch 7: val_loss improved from 2.11174 to 1.68834, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.5790 - loss: 5.9270 - val_accuracy: 0.7282 - val_loss: 1.6883\n",
"Epoch 8/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.5938 - loss: 6.1949\n",
"Epoch 8: val_loss improved from 1.68834 to 1.39033, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6495 - loss: 4.2499 - val_accuracy: 0.7282 - val_loss: 1.3903\n",
"Epoch 9/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.7812 - loss: 2.6101\n",
"Epoch 9: val_loss improved from 1.39033 to 1.19555, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6688 - loss: 3.7850 - val_accuracy: 0.7282 - val_loss: 1.1956\n",
"Epoch 10/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.5938 - loss: 3.2523\n",
"Epoch 10: val_loss improved from 1.19555 to 1.19277, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6258 - loss: 3.3801 - val_accuracy: 0.7282 - val_loss: 1.1928\n",
"Epoch 11/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.6250 - loss: 2.2360\n",
"Epoch 11: val_loss improved from 1.19277 to 1.07271, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6525 - loss: 3.1927 - val_accuracy: 0.7282 - val_loss: 1.0727\n",
"Epoch 12/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.6562 - loss: 4.2252\n",
"Epoch 12: val_loss improved from 1.07271 to 1.03591, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6514 - loss: 3.0835 - val_accuracy: 0.7282 - val_loss: 1.0359\n",
"Epoch 13/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.6562 - loss: 3.3775\n",
"Epoch 13: val_loss did not improve from 1.03591\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6636 - loss: 2.7042 - val_accuracy: 0.7282 - val_loss: 1.0713\n",
"Epoch 14/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 3.2629\n",
"Epoch 14: val_loss did not improve from 1.03591\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6326 - loss: 2.5686 - val_accuracy: 0.7282 - val_loss: 1.0756\n",
"Epoch 15/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.6562 - loss: 3.7654\n",
"Epoch 15: val_loss improved from 1.03591 to 1.01481, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6663 - loss: 2.3855 - val_accuracy: 0.7282 - val_loss: 1.0148\n",
"Epoch 16/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.6250 - loss: 2.1722\n",
"Epoch 16: val_loss improved from 1.01481 to 1.00236, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6389 - loss: 1.9125 - val_accuracy: 0.7282 - val_loss: 1.0024\n",
"Epoch 17/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.4062 - loss: 2.8053\n",
"Epoch 17: val_loss improved from 1.00236 to 1.00158, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.5887 - loss: 2.0436 - val_accuracy: 0.7282 - val_loss: 1.0016\n",
"Epoch 18/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.6562 - loss: 2.1894\n",
"Epoch 18: val_loss did not improve from 1.00158\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6451 - loss: 1.7902 - val_accuracy: 0.7282 - val_loss: 1.0104\n",
"Epoch 19/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.6875 - loss: 1.2992\n",
"Epoch 19: val_loss improved from 1.00158 to 0.98988, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6305 - loss: 1.8078 - val_accuracy: 0.7282 - val_loss: 0.9899\n",
"Epoch 20/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.5938 - loss: 1.9796\n",
"Epoch 20: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6325 - loss: 1.6304 - val_accuracy: 0.7282 - val_loss: 1.0112\n",
"Epoch 21/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 1.0891\n",
"Epoch 21: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7144 - loss: 1.2691 - val_accuracy: 0.7282 - val_loss: 1.0299\n",
"Epoch 22/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.6875 - loss: 1.4959\n",
"Epoch 22: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6914 - loss: 1.5631 - val_accuracy: 0.7282 - val_loss: 1.0585\n",
"Epoch 23/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 1.3707\n",
"Epoch 23: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7303 - loss: 1.2198 - val_accuracy: 0.7282 - val_loss: 1.0398\n",
"Epoch 24/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 2.6802\n",
"Epoch 24: val_loss did not improve from 0.98988\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6958 - loss: 1.6243 - val_accuracy: 0.7282 - val_loss: 1.0526\n",
"Epoch 25/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.6250 - loss: 1.3346\n",
"Epoch 25: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6771 - loss: 1.2211 - val_accuracy: 0.7282 - val_loss: 1.0524\n",
"Epoch 26/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.5312 - loss: 2.1067\n",
"Epoch 26: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6778 - loss: 1.6074 - val_accuracy: 0.7282 - val_loss: 1.0376\n",
"Epoch 27/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.5312 - loss: 1.5559\n",
"Epoch 27: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6782 - loss: 1.4016 - val_accuracy: 0.7282 - val_loss: 1.0039\n",
"Epoch 28/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.6590\n",
"Epoch 28: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7852 - loss: 0.9609 - val_accuracy: 0.7282 - val_loss: 0.9953\n",
"Epoch 29/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.5938 - loss: 1.5004\n",
"Epoch 29: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7568 - loss: 1.1752 - val_accuracy: 0.7282 - val_loss: 1.0424\n",
"Epoch 30/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.6250 - loss: 1.5044\n",
"Epoch 30: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7052 - loss: 1.1279 - val_accuracy: 0.7282 - val_loss: 1.0329\n",
"Epoch 31/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.5938 - loss: 1.9206\n",
"Epoch 31: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7117 - loss: 1.3123 - val_accuracy: 0.7282 - val_loss: 1.0477\n",
"Epoch 32/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.7891\n",
"Epoch 32: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7742 - loss: 0.9474 - val_accuracy: 0.7282 - val_loss: 1.0726\n",
"Epoch 33/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8750 - loss: 0.7086\n",
"Epoch 33: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7596 - loss: 1.1175 - val_accuracy: 0.7282 - val_loss: 1.0487\n",
"Epoch 34/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8750 - loss: 0.6791\n",
"Epoch 34: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7631 - loss: 1.0853 - val_accuracy: 0.7282 - val_loss: 1.0172\n",
"Epoch 35/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7188 - loss: 0.9913\n",
"Epoch 35: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7497 - loss: 1.0620 - val_accuracy: 0.7282 - val_loss: 0.9953\n",
"Epoch 36/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8125 - loss: 0.6980\n",
"Epoch 36: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7718 - loss: 0.9211 - val_accuracy: 0.7282 - val_loss: 1.0045\n",
"Epoch 37/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.6965\n",
"Epoch 37: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7637 - loss: 0.8684 - val_accuracy: 0.7282 - val_loss: 1.0102\n",
"Epoch 38/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.9062 - loss: 0.6313\n",
"Epoch 38: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8126 - loss: 0.8493 - val_accuracy: 0.7282 - val_loss: 0.9966\n",
"Epoch 39/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6875 - loss: 1.1845\n",
"Epoch 39: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7415 - loss: 1.0281 - val_accuracy: 0.7282 - val_loss: 1.0113\n",
"Epoch 40/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 1.2241\n",
"Epoch 40: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7883 - loss: 1.0743 - val_accuracy: 0.7282 - val_loss: 1.0338\n",
"Epoch 41/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.8787\n",
"Epoch 41: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8031 - loss: 0.8833 - val_accuracy: 0.7282 - val_loss: 1.0117\n",
"Epoch 42/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7188 - loss: 1.1767\n",
"Epoch 42: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7720 - loss: 0.9778 - val_accuracy: 0.7282 - val_loss: 0.9994\n",
"Epoch 43/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.6985\n",
"Epoch 43: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7837 - loss: 0.9230 - val_accuracy: 0.7282 - val_loss: 1.0094\n",
"Epoch 44/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8750 - loss: 0.4748\n",
"Epoch 44: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7915 - loss: 0.9233 - val_accuracy: 0.7282 - val_loss: 1.0357\n",
"Epoch 45/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8750 - loss: 0.6965\n",
"Epoch 45: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8135 - loss: 0.8862 - val_accuracy: 0.7282 - val_loss: 1.0525\n",
"Epoch 46/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7500 - loss: 0.7676\n",
"Epoch 46: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7945 - loss: 0.8852 - val_accuracy: 0.7282 - val_loss: 1.0297\n",
"Epoch 47/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8438 - loss: 0.5471\n",
"Epoch 47: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7881 - loss: 0.8314 - val_accuracy: 0.7282 - val_loss: 0.9968\n",
"Epoch 48/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8750 - loss: 0.5049\n",
"Epoch 48: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8032 - loss: 0.8580 - val_accuracy: 0.7282 - val_loss: 0.9949\n",
"Epoch 49/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7188 - loss: 0.9730\n",
"Epoch 49: val_loss did not improve from 0.98988\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7768 - loss: 0.9519 - val_accuracy: 0.7282 - val_loss: 0.9950\n",
"Epoch 50/100\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7812 - loss: 1.1724\n",
"Epoch 50: val_loss improved from 0.98988 to 0.98715, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7758 - loss: 1.0263 - val_accuracy: 0.7282 - val_loss: 0.9871\n",
"Epoch 51/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7500 - loss: 1.0490\n",
"Epoch 51: val_loss improved from 0.98715 to 0.98223, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7547 - loss: 1.0155 - val_accuracy: 0.7282 - val_loss: 0.9822\n",
"Epoch 52/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 1.2764\n",
"Epoch 52: val_loss did not improve from 0.98223\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7949 - loss: 0.9619 - val_accuracy: 0.7282 - val_loss: 0.9835\n",
"Epoch 53/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7500 - loss: 1.3644\n",
"Epoch 53: val_loss improved from 0.98223 to 0.97895, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7872 - loss: 1.0066 - val_accuracy: 0.7282 - val_loss: 0.9789\n",
"Epoch 54/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.7706\n",
"Epoch 54: val_loss improved from 0.97895 to 0.96493, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8054 - loss: 0.8880 - val_accuracy: 0.7282 - val_loss: 0.9649\n",
"Epoch 55/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6875 - loss: 1.0864\n",
"Epoch 55: val_loss improved from 0.96493 to 0.95673, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7823 - loss: 0.8469 - val_accuracy: 0.7282 - val_loss: 0.9567\n",
"Epoch 56/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 1.0572\n",
"Epoch 56: val_loss improved from 0.95673 to 0.95037, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7951 - loss: 0.8759 - val_accuracy: 0.7282 - val_loss: 0.9504\n",
"Epoch 57/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 1.0491\n",
"Epoch 57: val_loss did not improve from 0.95037\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8068 - loss: 0.8893 - val_accuracy: 0.7282 - val_loss: 0.9679\n",
"Epoch 58/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.8438 - loss: 0.8212\n",
"Epoch 58: val_loss did not improve from 0.95037\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8067 - loss: 0.8464 - val_accuracy: 0.7282 - val_loss: 0.9785\n",
"Epoch 59/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 0.8074\n",
"Epoch 59: val_loss did not improve from 0.95037\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8110 - loss: 0.7783 - val_accuracy: 0.7282 - val_loss: 0.9657\n",
"Epoch 60/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.9375 - loss: 0.5068\n",
"Epoch 60: val_loss did not improve from 0.95037\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8376 - loss: 0.7360 - val_accuracy: 0.7282 - val_loss: 0.9663\n",
"Epoch 61/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7500 - loss: 0.8686\n",
"Epoch 61: val_loss did not improve from 0.95037\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8111 - loss: 0.7876 - val_accuracy: 0.7282 - val_loss: 0.9632\n",
"Epoch 62/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7523\n",
"Epoch 62: val_loss did not improve from 0.95037\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8128 - loss: 0.7946 - val_accuracy: 0.7282 - val_loss: 0.9733\n",
"Epoch 63/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7812 - loss: 0.8872\n",
"Epoch 63: val_loss did not improve from 0.95037\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8017 - loss: 0.7635 - val_accuracy: 0.7282 - val_loss: 0.9592\n",
"Epoch 64/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.6562 - loss: 1.1472\n",
"Epoch 64: val_loss improved from 0.95037 to 0.94993, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7825 - loss: 0.8701 - val_accuracy: 0.7282 - val_loss: 0.9499\n",
"Epoch 65/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7188 - loss: 0.8833\n",
"Epoch 65: val_loss improved from 0.94993 to 0.94609, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7906 - loss: 0.8554 - val_accuracy: 0.7282 - val_loss: 0.9461\n",
"Epoch 66/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7188 - loss: 0.9959\n",
"Epoch 66: val_loss improved from 0.94609 to 0.92950, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7973 - loss: 0.8486 - val_accuracy: 0.7282 - val_loss: 0.9295\n",
"Epoch 67/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 1.2690\n",
"Epoch 67: val_loss did not improve from 0.92950\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7939 - loss: 0.8727 - val_accuracy: 0.7282 - val_loss: 0.9404\n",
"Epoch 68/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.7729\n",
"Epoch 68: val_loss did not improve from 0.92950\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8011 - loss: 0.8859 - val_accuracy: 0.7282 - val_loss: 0.9327\n",
"Epoch 69/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7812 - loss: 0.7983\n",
"Epoch 69: val_loss did not improve from 0.92950\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8240 - loss: 0.7458 - val_accuracy: 0.7282 - val_loss: 0.9319\n",
"Epoch 70/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.8125 - loss: 0.7055\n",
"Epoch 70: val_loss improved from 0.92950 to 0.92735, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8036 - loss: 0.7931 - val_accuracy: 0.7282 - val_loss: 0.9274\n",
"Epoch 71/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7812 - loss: 0.8137\n",
"Epoch 71: val_loss improved from 0.92735 to 0.92599, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8023 - loss: 0.7893 - val_accuracy: 0.7282 - val_loss: 0.9260\n",
"Epoch 72/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.6523\n",
"Epoch 72: val_loss improved from 0.92599 to 0.92060, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8132 - loss: 0.7949 - val_accuracy: 0.7282 - val_loss: 0.9206\n",
"Epoch 73/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.8125 - loss: 0.8290\n",
"Epoch 73: val_loss did not improve from 0.92060\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8300 - loss: 0.7700 - val_accuracy: 0.7282 - val_loss: 0.9273\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 74/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8438 - loss: 0.7377\n",
"Epoch 74: val_loss did not improve from 0.92060\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8034 - loss: 0.8272 - val_accuracy: 0.7282 - val_loss: 0.9297\n",
"Epoch 75/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8125 - loss: 0.8221\n",
"Epoch 75: val_loss did not improve from 0.92060\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8141 - loss: 0.8071 - val_accuracy: 0.7282 - val_loss: 0.9264\n",
"Epoch 76/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8438 - loss: 0.6241\n",
"Epoch 76: val_loss did not improve from 0.92060\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8313 - loss: 0.7314 - val_accuracy: 0.7282 - val_loss: 0.9241\n",
"Epoch 77/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7567\n",
"Epoch 77: val_loss improved from 0.92060 to 0.91963, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8189 - loss: 0.7449 - val_accuracy: 0.7282 - val_loss: 0.9196\n",
"Epoch 78/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 0.7788\n",
"Epoch 78: val_loss did not improve from 0.91963\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8098 - loss: 0.7512 - val_accuracy: 0.7282 - val_loss: 0.9206\n",
"Epoch 79/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7188 - loss: 0.9284\n",
"Epoch 79: val_loss did not improve from 0.91963\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7784 - loss: 0.8218 - val_accuracy: 0.7282 - val_loss: 0.9208\n",
"Epoch 80/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.5897\n",
"Epoch 80: val_loss improved from 0.91963 to 0.91612, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7774 - loss: 0.7675 - val_accuracy: 0.7282 - val_loss: 0.9161\n",
"Epoch 81/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 0.8273\n",
"Epoch 81: val_loss improved from 0.91612 to 0.91471, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8109 - loss: 0.7768 - val_accuracy: 0.7282 - val_loss: 0.9147\n",
"Epoch 82/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7718\n",
"Epoch 82: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8297 - loss: 0.6972 - val_accuracy: 0.7282 - val_loss: 0.9167\n",
"Epoch 83/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7190\n",
"Epoch 83: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8061 - loss: 0.7488 - val_accuracy: 0.7282 - val_loss: 0.9196\n",
"Epoch 84/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 0.9175\n",
"Epoch 84: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8036 - loss: 0.7816 - val_accuracy: 0.7282 - val_loss: 0.9226\n",
"Epoch 85/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8125 - loss: 0.7815\n",
"Epoch 85: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8151 - loss: 0.7643 - val_accuracy: 0.7282 - val_loss: 0.9201\n",
"Epoch 86/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.9062 - loss: 0.4617\n",
"Epoch 86: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8332 - loss: 0.6944 - val_accuracy: 0.7282 - val_loss: 0.9173\n",
"Epoch 87/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.8332\n",
"Epoch 87: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8034 - loss: 0.7576 - val_accuracy: 0.7282 - val_loss: 0.9181\n",
"Epoch 88/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.9062 - loss: 0.4584\n",
"Epoch 88: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8133 - loss: 0.7535 - val_accuracy: 0.7282 - val_loss: 0.9193\n",
"Epoch 89/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.7613\n",
"Epoch 89: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8365 - loss: 0.7370 - val_accuracy: 0.7282 - val_loss: 0.9191\n",
"Epoch 90/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8750 - loss: 0.7454\n",
"Epoch 90: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8401 - loss: 0.6890 - val_accuracy: 0.7282 - val_loss: 0.9179\n",
"Epoch 91/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7812 - loss: 0.8456\n",
"Epoch 91: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8015 - loss: 0.7629 - val_accuracy: 0.7282 - val_loss: 0.9177\n",
"Epoch 92/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 1.1234\n",
"Epoch 92: val_loss did not improve from 0.91471\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7767 - loss: 0.8235 - val_accuracy: 0.7282 - val_loss: 0.9155\n",
"Epoch 93/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8750 - loss: 0.6304\n",
"Epoch 93: val_loss improved from 0.91471 to 0.90965, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8300 - loss: 0.6764 - val_accuracy: 0.7282 - val_loss: 0.9097\n",
"Epoch 94/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8438 - loss: 0.7582\n",
"Epoch 94: val_loss improved from 0.90965 to 0.90822, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8243 - loss: 0.7305 - val_accuracy: 0.7282 - val_loss: 0.9082\n",
"Epoch 95/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.6170\n",
"Epoch 95: val_loss improved from 0.90822 to 0.90646, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8193 - loss: 0.6996 - val_accuracy: 0.7282 - val_loss: 0.9065\n",
"Epoch 96/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.5991\n",
"Epoch 96: val_loss improved from 0.90646 to 0.90536, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8026 - loss: 0.7276 - val_accuracy: 0.7282 - val_loss: 0.9054\n",
"Epoch 97/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8125 - loss: 0.7258\n",
"Epoch 97: val_loss did not improve from 0.90536\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8285 - loss: 0.7067 - val_accuracy: 0.7282 - val_loss: 0.9055\n",
"Epoch 98/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7812 - loss: 0.7810\n",
"Epoch 98: val_loss improved from 0.90536 to 0.90286, saving model to audio_classification.keras\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8163 - loss: 0.7018 - val_accuracy: 0.7282 - val_loss: 0.9029\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 99/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7188 - loss: 1.1051\n",
"Epoch 99: val_loss did not improve from 0.90286\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8075 - loss: 0.7663 - val_accuracy: 0.7282 - val_loss: 0.9030\n",
"Epoch 100/100\n",
"\u001b[1m 1/13\u001b[0m \u001b[32mβ\u001b[0m\u001b[37mβββββββββββββββββββ\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.6395\n",
"Epoch 100: val_loss did not improve from 0.90286\n",
"\u001b[1m13/13\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7935 - loss: 0.7532 - val_accuracy: 0.7282 - val_loss: 0.9033\n",
"Test accuracy: 72.82%\n"
]
}
],
"source": [
"\n",
"\n",
"# Define the model\n",
"model = Sequential()\n",
"\n",
"model.add(Dense(256, input_shape=(40,)))\n",
"model.add(Activation('relu'))\n",
"model.add(Dropout(0.5))\n",
"\n",
"model.add(Dense(128))\n",
"model.add(Activation('relu'))\n",
"model.add(Dropout(0.5))\n",
"\n",
"model.add(Dense(64))\n",
"model.add(Activation('relu'))\n",
"model.add(Dropout(0.5))\n",
"\n",
"model.add(Dense(len(categories)))\n",
"model.add(Activation('softmax'))\n",
"\n",
"# Compile the model\n",
"model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')\n",
"\n",
"# Train the model\n",
"num_epochs = 100\n",
"num_batch_size = 32\n",
"\n",
"checkpointer = ModelCheckpoint(filepath='audio_classification.keras', \n",
" verbose=1, save_best_only=True)\n",
"\n",
"history = model.fit(X_train, y_train, batch_size=num_batch_size, epochs=num_epochs, validation_data=(X_test, y_test), callbacks=[checkpointer], verbose=1)\n",
"\n",
"# Evaluate the model\n",
"test_accuracy = model.evaluate(X_test, y_test, verbose=0)\n",
"print(f'Test accuracy: {test_accuracy[1] * 100:.2f}%')\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "0559c8e5",
"metadata": {},
"outputs": [],
"source": [
"# Save the model\n",
"model.save('infant_cry_classification_model.keras')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "171ff113",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|