{ "cells": [ { "cell_type": "code", "execution_count": 12, "id": "9b5d89c1", "metadata": { "collapsed": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Defaulting to user installation because normal site-packages is not writeable\n", "Requirement already satisfied: tensorflow in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (2.17.0)\n", "Requirement already satisfied: librosa in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (0.10.2.post1)\n", "Requirement already satisfied: numpy in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (1.26.4)\n", "Requirement already satisfied: pandas in c:\\programdata\\anaconda3\\lib\\site-packages (1.4.2)\n", "Requirement already satisfied: matplotlib in c:\\programdata\\anaconda3\\lib\\site-packages (3.5.1)\n", "Requirement already satisfied: scikit-learn in c:\\programdata\\anaconda3\\lib\\site-packages (1.0.2)\n", "Requirement already satisfied: resampy in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (0.4.3)\n", "Requirement already satisfied: xgboost in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (2.1.1)\n", "Requirement already satisfied: tensorflow-intel==2.17.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow) (2.17.0)\n", "Requirement already satisfied: tensorboard<2.18,>=2.17 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.17.0)\n", "Requirement already satisfied: absl-py>=1.0.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.1.0)\n", "Requirement already satisfied: flatbuffers>=24.3.25 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (24.3.25)\n", "Requirement already satisfied: six>=1.12.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.16.0)\n", "Requirement already satisfied: keras>=3.2.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.4.1)\n", "Requirement already satisfied: packaging in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (21.3)\n", "Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.4.0)\n", "Requirement already satisfied: wrapt>=1.11.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.12.1)\n", "Requirement already satisfied: termcolor>=1.1.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.4.0)\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.65.4)\n", "Requirement already satisfied: libclang>=13.0.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (18.1.1)\n", "Requirement already satisfied: astunparse>=1.6.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (1.6.3)\n", "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.6.0)\n", "Requirement already satisfied: opt-einsum>=2.3.2 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.3.0)\n", "Requirement already satisfied: requests<3,>=2.21.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (2.27.1)\n", "Requirement already satisfied: typing-extensions>=3.6.6 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (4.12.2)\n", "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (4.25.4)\n", "Requirement already satisfied: h5py>=3.10.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (3.11.0)\n", "Requirement already satisfied: setuptools in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (61.2.0)\n", "Requirement already satisfied: google-pasta>=0.1.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.2.0)\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorflow-intel==2.17.0->tensorflow) (0.31.0)\n", "Requirement already satisfied: pooch>=1.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (1.8.2)\n", "Requirement already satisfied: scipy>=1.2.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (1.13.1)\n", "Requirement already satisfied: lazy-loader>=0.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.4)\n", "Requirement already satisfied: numba>=0.51.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.60.0)\n", "Requirement already satisfied: soxr>=0.3.2 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.4.0)\n", "Requirement already satisfied: audioread>=2.1.9 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (3.0.1)\n", "Requirement already satisfied: decorator>=4.3.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from librosa) (5.1.1)\n", "Requirement already satisfied: soundfile>=0.12.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from librosa) (0.12.1)\n", "Requirement already satisfied: msgpack>=1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from librosa) (1.0.2)\n", "Requirement already satisfied: joblib>=0.14 in c:\\programdata\\anaconda3\\lib\\site-packages (from librosa) (1.1.0)\n", "Requirement already satisfied: python-dateutil>=2.8.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from pandas) (2021.3)\n", "Requirement already satisfied: cycler>=0.10 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (0.11.0)\n", "Requirement already satisfied: pillow>=6.2.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (9.0.1)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (1.3.2)\n", "Requirement already satisfied: fonttools>=4.22.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (4.25.0)\n", "Requirement already satisfied: pyparsing>=2.2.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from matplotlib) (3.0.4)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from scikit-learn) (2.2.0)\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from astunparse>=1.6.0->tensorflow-intel==2.17.0->tensorflow) (0.37.1)\n", "Requirement already satisfied: rich in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (13.7.1)\n", "Requirement already satisfied: namex in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.0.8)\n", "Requirement already satisfied: optree in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.12.1)\n", "Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from numba>=0.51.0->librosa) (0.43.0)\n", "Requirement already satisfied: platformdirs>=2.5.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from pooch>=1.1->librosa) (4.2.2)\n", "Requirement already satisfied: charset-normalizer~=2.0.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2.0.4)\n", "Requirement already satisfied: certifi>=2017.4.17 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (2021.10.8)\n", "Requirement already satisfied: urllib3<1.27,>=1.21.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (1.26.9)\n", "Requirement already satisfied: idna<4,>=2.5 in c:\\programdata\\anaconda3\\lib\\site-packages (from requests<3,>=2.21.0->tensorflow-intel==2.17.0->tensorflow) (3.3)\n", "Requirement already satisfied: cffi>=1.0 in c:\\programdata\\anaconda3\\lib\\site-packages (from soundfile>=0.12.1->librosa) (1.15.0)\n", "Requirement already satisfied: pycparser in c:\\programdata\\anaconda3\\lib\\site-packages (from cffi>=1.0->soundfile>=0.12.1->librosa) (2.21)\n", "Requirement already satisfied: markdown>=2.6.8 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (3.3.4)\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (0.7.2)\n", "Requirement already satisfied: werkzeug>=1.0.1 in c:\\programdata\\anaconda3\\lib\\site-packages (from tensorboard<2.18,>=2.17->tensorflow-intel==2.17.0->tensorflow) (2.0.3)\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (3.0.0)\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (2.18.0)\n", "Requirement already satisfied: mdurl~=0.1 in c:\\users\\msi\\appdata\\roaming\\python\\python39\\site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow-intel==2.17.0->tensorflow) (0.1.2)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "pip install tensorflow librosa numpy pandas matplotlib scikit-learn resampy xgboost" ] }, { "cell_type": "code", "execution_count": 8, "id": "2317d7f3", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\MSI\\AppData\\Local\\Temp\\ipykernel_2700\\1497878668.py:24: UserWarning: PySoundFile failed. Trying audioread instead.\n", " audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Error encountered while parsing file: soundclips\\discomfort\\Minta Gendong AUD-20150509-WA0000.wav, \n", "Feature extraction failed for file: soundclips\\discomfort\\Minta Gendong AUD-20150509-WA0000.wav\n", "Error encountered while parsing file: soundclips\\discomfort\\recordgntipopok.wav, \n", "Feature extraction failed for file: soundclips\\discomfort\\recordgntipopok.wav\n", "Error encountered while parsing file: soundclips\\hungry\\Lapar AUD-20150509-WA0001.wav, \n", "Feature extraction failed for file: soundclips\\hungry\\Lapar AUD-20150509-WA0001.wav\n", "Error encountered while parsing file: soundclips\\hungry\\record-baby-1 cari puting.wav, \n", "Feature extraction failed for file: soundclips\\hungry\\record-baby-1 cari puting.wav\n", "Error encountered while parsing file: soundclips\\hungry\\record-baby2 puting dilepas.wav, \n", "Feature extraction failed for file: soundclips\\hungry\\record-baby2 puting dilepas.wav\n", "Error encountered while parsing file: soundclips\\tired\\Bangun Tidur AUD-20150509-WA0002.wav, \n", "Feature extraction failed for file: soundclips\\tired\\Bangun Tidur AUD-20150509-WA0002.wav\n" ] } ], "source": [ "import os\n", "import numpy as np\n", "import librosa\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import LabelEncoder\n", "from tensorflow.keras.utils import to_categorical\n", "import xgboost as xgb\n", "from sklearn.metrics import accuracy_score\n", "from tensorflow.keras.models import Sequential\n", "from tensorflow.keras.layers import Dense, Dropout, Activation\n", "from tensorflow.keras.optimizers import Adam\n", "from tensorflow.keras.callbacks import ModelCheckpoint\n", "\n", "# Path to the dataset\n", "dataset_path = 'soundclips'\n", "\n", "# List of categories\n", "categories = ['belly_pain', 'burping', 'discomfort', 'hungry', 'tired']\n", "\n", "# Function to extract features from audio files\n", "def extract_features(file_name):\n", " try:\n", " audio, sample_rate = librosa.load(file_name, res_type='kaiser_fast')\n", " mfccs = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)\n", " mfccs_scaled = np.mean(mfccs.T, axis=0)\n", " \n", " return mfccs_scaled\n", " except Exception as e:\n", " print(f\"Error encountered while parsing file: {file_name}, {e}\")\n", " return None\n", "\n", "# Create DataFrame to hold features and labels\n", "features = []\n", "labels = []\n", "\n", "# Iterate through each category\n", "for category in categories:\n", " category_path = os.path.join(dataset_path, category)\n", " if not os.path.exists(category_path):\n", " print(f\"Directory does not exist: {category_path}\")\n", " continue\n", " \n", " for file in os.listdir(category_path):\n", " file_path = os.path.join(category_path, file)\n", " data = extract_features(file_path)\n", " if data is not None and len(data) > 0:\n", " features.append(data)\n", " labels.append(category)\n", " else:\n", " print(f\"Feature extraction failed for file: {file_path}\")\n", "\n", "# Convert to numpy arrays\n", "features = np.array(features)\n", "labels = np.array(labels)\n", "\n", "# Check if features array is empty\n", "if features.size == 0:\n", " raise ValueError(\"No features extracted. Please check the dataset and ensure audio files are present and readable.\")\n", "\n", "# Encode the labels\n", "le = LabelEncoder()\n", "labels_encoded = le.fit_transform(labels)\n", "labels_categorical = to_categorical(labels_encoded)\n", "\n", "# Split the dataset\n", "X_train, X_test, y_train, y_test = train_test_split(features, labels_categorical, test_size=0.2, random_state=42)\n" ] }, { "cell_type": "code", "execution_count": 9, "id": "955d889d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/100\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\MSI\\AppData\\Roaming\\Python\\Python39\\site-packages\\keras\\src\\layers\\core\\dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m9s\u001b[0m 770ms/step - accuracy: 0.1250 - loss: 92.2737\n", "Epoch 1: val_loss improved from inf to 11.10916, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 14ms/step - accuracy: 0.2303 - loss: 55.0404 - val_accuracy: 0.7282 - val_loss: 11.1092\n", "Epoch 2/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.7500 - loss: 10.0197\n", "Epoch 2: val_loss improved from 11.10916 to 8.67415, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7144 - loss: 12.5967 - val_accuracy: 0.7282 - val_loss: 8.6742\n", "Epoch 3/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6875 - loss: 17.6288\n", "Epoch 3: val_loss improved from 8.67415 to 4.57907, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6595 - loss: 14.6687 - val_accuracy: 0.7282 - val_loss: 4.5791\n", "Epoch 4/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.6875 - loss: 7.3426\n", "Epoch 4: val_loss improved from 4.57907 to 3.37468, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6161 - loss: 8.2100 - val_accuracy: 0.7282 - val_loss: 3.3747\n", "Epoch 5/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.5938 - loss: 6.5427\n", "Epoch 5: val_loss improved from 3.37468 to 2.81896, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6420 - loss: 6.6541 - val_accuracy: 0.7282 - val_loss: 2.8190\n", "Epoch 6/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7500 - loss: 4.3348\n", "Epoch 6: val_loss improved from 2.81896 to 2.11174, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6473 - loss: 5.6300 - val_accuracy: 0.7282 - val_loss: 2.1117\n", "Epoch 7/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.5312 - loss: 8.7231\n", "Epoch 7: val_loss improved from 2.11174 to 1.68834, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.5790 - loss: 5.9270 - val_accuracy: 0.7282 - val_loss: 1.6883\n", "Epoch 8/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.5938 - loss: 6.1949\n", "Epoch 8: val_loss improved from 1.68834 to 1.39033, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6495 - loss: 4.2499 - val_accuracy: 0.7282 - val_loss: 1.3903\n", "Epoch 9/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.7812 - loss: 2.6101\n", "Epoch 9: val_loss improved from 1.39033 to 1.19555, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6688 - loss: 3.7850 - val_accuracy: 0.7282 - val_loss: 1.1956\n", "Epoch 10/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.5938 - loss: 3.2523\n", "Epoch 10: val_loss improved from 1.19555 to 1.19277, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6258 - loss: 3.3801 - val_accuracy: 0.7282 - val_loss: 1.1928\n", "Epoch 11/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.6250 - loss: 2.2360\n", "Epoch 11: val_loss improved from 1.19277 to 1.07271, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6525 - loss: 3.1927 - val_accuracy: 0.7282 - val_loss: 1.0727\n", "Epoch 12/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.6562 - loss: 4.2252\n", "Epoch 12: val_loss improved from 1.07271 to 1.03591, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6514 - loss: 3.0835 - val_accuracy: 0.7282 - val_loss: 1.0359\n", "Epoch 13/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.6562 - loss: 3.3775\n", "Epoch 13: val_loss did not improve from 1.03591\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6636 - loss: 2.7042 - val_accuracy: 0.7282 - val_loss: 1.0713\n", "Epoch 14/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 3.2629\n", "Epoch 14: val_loss did not improve from 1.03591\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6326 - loss: 2.5686 - val_accuracy: 0.7282 - val_loss: 1.0756\n", "Epoch 15/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 26ms/step - accuracy: 0.6562 - loss: 3.7654\n", "Epoch 15: val_loss improved from 1.03591 to 1.01481, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6663 - loss: 2.3855 - val_accuracy: 0.7282 - val_loss: 1.0148\n", "Epoch 16/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.6250 - loss: 2.1722\n", "Epoch 16: val_loss improved from 1.01481 to 1.00236, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6389 - loss: 1.9125 - val_accuracy: 0.7282 - val_loss: 1.0024\n", "Epoch 17/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.4062 - loss: 2.8053\n", "Epoch 17: val_loss improved from 1.00236 to 1.00158, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.5887 - loss: 2.0436 - val_accuracy: 0.7282 - val_loss: 1.0016\n", "Epoch 18/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.6562 - loss: 2.1894\n", "Epoch 18: val_loss did not improve from 1.00158\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6451 - loss: 1.7902 - val_accuracy: 0.7282 - val_loss: 1.0104\n", "Epoch 19/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 24ms/step - accuracy: 0.6875 - loss: 1.2992\n", "Epoch 19: val_loss improved from 1.00158 to 0.98988, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.6305 - loss: 1.8078 - val_accuracy: 0.7282 - val_loss: 0.9899\n", "Epoch 20/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.5938 - loss: 1.9796\n", "Epoch 20: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6325 - loss: 1.6304 - val_accuracy: 0.7282 - val_loss: 1.0112\n", "Epoch 21/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 1.0891\n", "Epoch 21: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7144 - loss: 1.2691 - val_accuracy: 0.7282 - val_loss: 1.0299\n", "Epoch 22/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.6875 - loss: 1.4959\n", "Epoch 22: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6914 - loss: 1.5631 - val_accuracy: 0.7282 - val_loss: 1.0585\n", "Epoch 23/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 1.3707\n", "Epoch 23: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7303 - loss: 1.2198 - val_accuracy: 0.7282 - val_loss: 1.0398\n", "Epoch 24/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 2.6802\n", "Epoch 24: val_loss did not improve from 0.98988\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6958 - loss: 1.6243 - val_accuracy: 0.7282 - val_loss: 1.0526\n", "Epoch 25/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.6250 - loss: 1.3346\n", "Epoch 25: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6771 - loss: 1.2211 - val_accuracy: 0.7282 - val_loss: 1.0524\n", "Epoch 26/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.5312 - loss: 2.1067\n", "Epoch 26: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6778 - loss: 1.6074 - val_accuracy: 0.7282 - val_loss: 1.0376\n", "Epoch 27/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 25ms/step - accuracy: 0.5312 - loss: 1.5559\n", "Epoch 27: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.6782 - loss: 1.4016 - val_accuracy: 0.7282 - val_loss: 1.0039\n", "Epoch 28/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.6590\n", "Epoch 28: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7852 - loss: 0.9609 - val_accuracy: 0.7282 - val_loss: 0.9953\n", "Epoch 29/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.5938 - loss: 1.5004\n", "Epoch 29: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7568 - loss: 1.1752 - val_accuracy: 0.7282 - val_loss: 1.0424\n", "Epoch 30/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.6250 - loss: 1.5044\n", "Epoch 30: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7052 - loss: 1.1279 - val_accuracy: 0.7282 - val_loss: 1.0329\n", "Epoch 31/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.5938 - loss: 1.9206\n", "Epoch 31: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7117 - loss: 1.3123 - val_accuracy: 0.7282 - val_loss: 1.0477\n", "Epoch 32/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.7891\n", "Epoch 32: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7742 - loss: 0.9474 - val_accuracy: 0.7282 - val_loss: 1.0726\n", "Epoch 33/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8750 - loss: 0.7086\n", "Epoch 33: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7596 - loss: 1.1175 - val_accuracy: 0.7282 - val_loss: 1.0487\n", "Epoch 34/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8750 - loss: 0.6791\n", "Epoch 34: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7631 - loss: 1.0853 - val_accuracy: 0.7282 - val_loss: 1.0172\n", "Epoch 35/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7188 - loss: 0.9913\n", "Epoch 35: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7497 - loss: 1.0620 - val_accuracy: 0.7282 - val_loss: 0.9953\n", "Epoch 36/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8125 - loss: 0.6980\n", "Epoch 36: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7718 - loss: 0.9211 - val_accuracy: 0.7282 - val_loss: 1.0045\n", "Epoch 37/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.6965\n", "Epoch 37: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7637 - loss: 0.8684 - val_accuracy: 0.7282 - val_loss: 1.0102\n", "Epoch 38/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.9062 - loss: 0.6313\n", "Epoch 38: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8126 - loss: 0.8493 - val_accuracy: 0.7282 - val_loss: 0.9966\n", "Epoch 39/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6875 - loss: 1.1845\n", "Epoch 39: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7415 - loss: 1.0281 - val_accuracy: 0.7282 - val_loss: 1.0113\n", "Epoch 40/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 1.2241\n", "Epoch 40: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7883 - loss: 1.0743 - val_accuracy: 0.7282 - val_loss: 1.0338\n", "Epoch 41/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.8787\n", "Epoch 41: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8031 - loss: 0.8833 - val_accuracy: 0.7282 - val_loss: 1.0117\n", "Epoch 42/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7188 - loss: 1.1767\n", "Epoch 42: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7720 - loss: 0.9778 - val_accuracy: 0.7282 - val_loss: 0.9994\n", "Epoch 43/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.6985\n", "Epoch 43: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7837 - loss: 0.9230 - val_accuracy: 0.7282 - val_loss: 1.0094\n", "Epoch 44/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8750 - loss: 0.4748\n", "Epoch 44: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7915 - loss: 0.9233 - val_accuracy: 0.7282 - val_loss: 1.0357\n", "Epoch 45/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8750 - loss: 0.6965\n", "Epoch 45: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8135 - loss: 0.8862 - val_accuracy: 0.7282 - val_loss: 1.0525\n", "Epoch 46/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7500 - loss: 0.7676\n", "Epoch 46: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7945 - loss: 0.8852 - val_accuracy: 0.7282 - val_loss: 1.0297\n", "Epoch 47/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8438 - loss: 0.5471\n", "Epoch 47: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7881 - loss: 0.8314 - val_accuracy: 0.7282 - val_loss: 0.9968\n", "Epoch 48/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8750 - loss: 0.5049\n", "Epoch 48: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8032 - loss: 0.8580 - val_accuracy: 0.7282 - val_loss: 0.9949\n", "Epoch 49/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7188 - loss: 0.9730\n", "Epoch 49: val_loss did not improve from 0.98988\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7768 - loss: 0.9519 - val_accuracy: 0.7282 - val_loss: 0.9950\n", "Epoch 50/100\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7812 - loss: 1.1724\n", "Epoch 50: val_loss improved from 0.98988 to 0.98715, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7758 - loss: 1.0263 - val_accuracy: 0.7282 - val_loss: 0.9871\n", "Epoch 51/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7500 - loss: 1.0490\n", "Epoch 51: val_loss improved from 0.98715 to 0.98223, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7547 - loss: 1.0155 - val_accuracy: 0.7282 - val_loss: 0.9822\n", "Epoch 52/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 1.2764\n", "Epoch 52: val_loss did not improve from 0.98223\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7949 - loss: 0.9619 - val_accuracy: 0.7282 - val_loss: 0.9835\n", "Epoch 53/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7500 - loss: 1.3644\n", "Epoch 53: val_loss improved from 0.98223 to 0.97895, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7872 - loss: 1.0066 - val_accuracy: 0.7282 - val_loss: 0.9789\n", "Epoch 54/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.7706\n", "Epoch 54: val_loss improved from 0.97895 to 0.96493, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8054 - loss: 0.8880 - val_accuracy: 0.7282 - val_loss: 0.9649\n", "Epoch 55/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6875 - loss: 1.0864\n", "Epoch 55: val_loss improved from 0.96493 to 0.95673, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7823 - loss: 0.8469 - val_accuracy: 0.7282 - val_loss: 0.9567\n", "Epoch 56/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 1.0572\n", "Epoch 56: val_loss improved from 0.95673 to 0.95037, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7951 - loss: 0.8759 - val_accuracy: 0.7282 - val_loss: 0.9504\n", "Epoch 57/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 1.0491\n", "Epoch 57: val_loss did not improve from 0.95037\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8068 - loss: 0.8893 - val_accuracy: 0.7282 - val_loss: 0.9679\n", "Epoch 58/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.8438 - loss: 0.8212\n", "Epoch 58: val_loss did not improve from 0.95037\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8067 - loss: 0.8464 - val_accuracy: 0.7282 - val_loss: 0.9785\n", "Epoch 59/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 0.8074\n", "Epoch 59: val_loss did not improve from 0.95037\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8110 - loss: 0.7783 - val_accuracy: 0.7282 - val_loss: 0.9657\n", "Epoch 60/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.9375 - loss: 0.5068\n", "Epoch 60: val_loss did not improve from 0.95037\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8376 - loss: 0.7360 - val_accuracy: 0.7282 - val_loss: 0.9663\n", "Epoch 61/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7500 - loss: 0.8686\n", "Epoch 61: val_loss did not improve from 0.95037\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8111 - loss: 0.7876 - val_accuracy: 0.7282 - val_loss: 0.9632\n", "Epoch 62/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7523\n", "Epoch 62: val_loss did not improve from 0.95037\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8128 - loss: 0.7946 - val_accuracy: 0.7282 - val_loss: 0.9733\n", "Epoch 63/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7812 - loss: 0.8872\n", "Epoch 63: val_loss did not improve from 0.95037\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8017 - loss: 0.7635 - val_accuracy: 0.7282 - val_loss: 0.9592\n", "Epoch 64/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.6562 - loss: 1.1472\n", "Epoch 64: val_loss improved from 0.95037 to 0.94993, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7825 - loss: 0.8701 - val_accuracy: 0.7282 - val_loss: 0.9499\n", "Epoch 65/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7188 - loss: 0.8833\n", "Epoch 65: val_loss improved from 0.94993 to 0.94609, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7906 - loss: 0.8554 - val_accuracy: 0.7282 - val_loss: 0.9461\n", "Epoch 66/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7188 - loss: 0.9959\n", "Epoch 66: val_loss improved from 0.94609 to 0.92950, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7973 - loss: 0.8486 - val_accuracy: 0.7282 - val_loss: 0.9295\n", "Epoch 67/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 1.2690\n", "Epoch 67: val_loss did not improve from 0.92950\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7939 - loss: 0.8727 - val_accuracy: 0.7282 - val_loss: 0.9404\n", "Epoch 68/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.7729\n", "Epoch 68: val_loss did not improve from 0.92950\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8011 - loss: 0.8859 - val_accuracy: 0.7282 - val_loss: 0.9327\n", "Epoch 69/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7812 - loss: 0.7983\n", "Epoch 69: val_loss did not improve from 0.92950\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8240 - loss: 0.7458 - val_accuracy: 0.7282 - val_loss: 0.9319\n", "Epoch 70/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.8125 - loss: 0.7055\n", "Epoch 70: val_loss improved from 0.92950 to 0.92735, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8036 - loss: 0.7931 - val_accuracy: 0.7282 - val_loss: 0.9274\n", "Epoch 71/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7812 - loss: 0.8137\n", "Epoch 71: val_loss improved from 0.92735 to 0.92599, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8023 - loss: 0.7893 - val_accuracy: 0.7282 - val_loss: 0.9260\n", "Epoch 72/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.6523\n", "Epoch 72: val_loss improved from 0.92599 to 0.92060, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8132 - loss: 0.7949 - val_accuracy: 0.7282 - val_loss: 0.9206\n", "Epoch 73/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 22ms/step - accuracy: 0.8125 - loss: 0.8290\n", "Epoch 73: val_loss did not improve from 0.92060\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 4ms/step - accuracy: 0.8300 - loss: 0.7700 - val_accuracy: 0.7282 - val_loss: 0.9273\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 74/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8438 - loss: 0.7377\n", "Epoch 74: val_loss did not improve from 0.92060\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8034 - loss: 0.8272 - val_accuracy: 0.7282 - val_loss: 0.9297\n", "Epoch 75/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8125 - loss: 0.8221\n", "Epoch 75: val_loss did not improve from 0.92060\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8141 - loss: 0.8071 - val_accuracy: 0.7282 - val_loss: 0.9264\n", "Epoch 76/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8438 - loss: 0.6241\n", "Epoch 76: val_loss did not improve from 0.92060\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8313 - loss: 0.7314 - val_accuracy: 0.7282 - val_loss: 0.9241\n", "Epoch 77/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7567\n", "Epoch 77: val_loss improved from 0.92060 to 0.91963, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8189 - loss: 0.7449 - val_accuracy: 0.7282 - val_loss: 0.9196\n", "Epoch 78/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 0.7788\n", "Epoch 78: val_loss did not improve from 0.91963\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8098 - loss: 0.7512 - val_accuracy: 0.7282 - val_loss: 0.9206\n", "Epoch 79/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.7188 - loss: 0.9284\n", "Epoch 79: val_loss did not improve from 0.91963\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7784 - loss: 0.8218 - val_accuracy: 0.7282 - val_loss: 0.9208\n", "Epoch 80/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.5897\n", "Epoch 80: val_loss improved from 0.91963 to 0.91612, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.7774 - loss: 0.7675 - val_accuracy: 0.7282 - val_loss: 0.9161\n", "Epoch 81/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7500 - loss: 0.8273\n", "Epoch 81: val_loss improved from 0.91612 to 0.91471, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8109 - loss: 0.7768 - val_accuracy: 0.7282 - val_loss: 0.9147\n", "Epoch 82/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7718\n", "Epoch 82: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8297 - loss: 0.6972 - val_accuracy: 0.7282 - val_loss: 0.9167\n", "Epoch 83/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.7190\n", "Epoch 83: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8061 - loss: 0.7488 - val_accuracy: 0.7282 - val_loss: 0.9196\n", "Epoch 84/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7812 - loss: 0.9175\n", "Epoch 84: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8036 - loss: 0.7816 - val_accuracy: 0.7282 - val_loss: 0.9226\n", "Epoch 85/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8125 - loss: 0.7815\n", "Epoch 85: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8151 - loss: 0.7643 - val_accuracy: 0.7282 - val_loss: 0.9201\n", "Epoch 86/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.9062 - loss: 0.4617\n", "Epoch 86: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8332 - loss: 0.6944 - val_accuracy: 0.7282 - val_loss: 0.9173\n", "Epoch 87/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.8332\n", "Epoch 87: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8034 - loss: 0.7576 - val_accuracy: 0.7282 - val_loss: 0.9181\n", "Epoch 88/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.9062 - loss: 0.4584\n", "Epoch 88: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8133 - loss: 0.7535 - val_accuracy: 0.7282 - val_loss: 0.9193\n", "Epoch 89/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.7613\n", "Epoch 89: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8365 - loss: 0.7370 - val_accuracy: 0.7282 - val_loss: 0.9191\n", "Epoch 90/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8750 - loss: 0.7454\n", "Epoch 90: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8401 - loss: 0.6890 - val_accuracy: 0.7282 - val_loss: 0.9179\n", "Epoch 91/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.7812 - loss: 0.8456\n", "Epoch 91: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8015 - loss: 0.7629 - val_accuracy: 0.7282 - val_loss: 0.9177\n", "Epoch 92/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.6562 - loss: 1.1234\n", "Epoch 92: val_loss did not improve from 0.91471\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7767 - loss: 0.8235 - val_accuracy: 0.7282 - val_loss: 0.9155\n", "Epoch 93/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8750 - loss: 0.6304\n", "Epoch 93: val_loss improved from 0.91471 to 0.90965, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8300 - loss: 0.6764 - val_accuracy: 0.7282 - val_loss: 0.9097\n", "Epoch 94/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 19ms/step - accuracy: 0.8438 - loss: 0.7582\n", "Epoch 94: val_loss improved from 0.90965 to 0.90822, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8243 - loss: 0.7305 - val_accuracy: 0.7282 - val_loss: 0.9082\n", "Epoch 95/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8438 - loss: 0.6170\n", "Epoch 95: val_loss improved from 0.90822 to 0.90646, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8193 - loss: 0.6996 - val_accuracy: 0.7282 - val_loss: 0.9065\n", "Epoch 96/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.8125 - loss: 0.5991\n", "Epoch 96: val_loss improved from 0.90646 to 0.90536, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8026 - loss: 0.7276 - val_accuracy: 0.7282 - val_loss: 0.9054\n", "Epoch 97/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 21ms/step - accuracy: 0.8125 - loss: 0.7258\n", "Epoch 97: val_loss did not improve from 0.90536\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8285 - loss: 0.7067 - val_accuracy: 0.7282 - val_loss: 0.9055\n", "Epoch 98/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 23ms/step - accuracy: 0.7812 - loss: 0.7810\n", "Epoch 98: val_loss improved from 0.90536 to 0.90286, saving model to audio_classification.keras\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 5ms/step - accuracy: 0.8163 - loss: 0.7018 - val_accuracy: 0.7282 - val_loss: 0.9029\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 99/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.7188 - loss: 1.1051\n", "Epoch 99: val_loss did not improve from 0.90286\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.8075 - loss: 0.7663 - val_accuracy: 0.7282 - val_loss: 0.9030\n", "Epoch 100/100\n", "\u001b[1m 1/13\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m0s\u001b[0m 20ms/step - accuracy: 0.8125 - loss: 0.6395\n", "Epoch 100: val_loss did not improve from 0.90286\n", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 3ms/step - accuracy: 0.7935 - loss: 0.7532 - val_accuracy: 0.7282 - val_loss: 0.9033\n", "Test accuracy: 72.82%\n" ] } ], "source": [ "\n", "\n", "# Define the model\n", "model = Sequential()\n", "\n", "model.add(Dense(256, input_shape=(40,)))\n", "model.add(Activation('relu'))\n", "model.add(Dropout(0.5))\n", "\n", "model.add(Dense(128))\n", "model.add(Activation('relu'))\n", "model.add(Dropout(0.5))\n", "\n", "model.add(Dense(64))\n", "model.add(Activation('relu'))\n", "model.add(Dropout(0.5))\n", "\n", "model.add(Dense(len(categories)))\n", "model.add(Activation('softmax'))\n", "\n", "# Compile the model\n", "model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')\n", "\n", "# Train the model\n", "num_epochs = 100\n", "num_batch_size = 32\n", "\n", "checkpointer = ModelCheckpoint(filepath='audio_classification.keras', \n", " verbose=1, save_best_only=True)\n", "\n", "history = model.fit(X_train, y_train, batch_size=num_batch_size, epochs=num_epochs, validation_data=(X_test, y_test), callbacks=[checkpointer], verbose=1)\n", "\n", "# Evaluate the model\n", "test_accuracy = model.evaluate(X_test, y_test, verbose=0)\n", "print(f'Test accuracy: {test_accuracy[1] * 100:.2f}%')\n" ] }, { "cell_type": "code", "execution_count": 10, "id": "0559c8e5", "metadata": {}, "outputs": [], "source": [ "# Save the model\n", "model.save('infant_cry_classification_model.keras')" ] }, { "cell_type": "code", "execution_count": null, "id": "171ff113", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }