File size: 2,703 Bytes
902a714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: layoutlm-funsd-tf
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd-tf

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.2471
- Validation Loss: 0.6741
- Train Overall Precision: 0.7311
- Train Overall Recall: 0.7858
- Train Overall F1: 0.7574
- Train Overall Accuracy: 0.8104
- Epoch: 7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 3e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16

### Training results

| Train Loss | Validation Loss | Train Overall Precision | Train Overall Recall | Train Overall F1 | Train Overall Accuracy | Epoch |
|:----------:|:---------------:|:-----------------------:|:--------------------:|:----------------:|:----------------------:|:-----:|
| 1.7162     | 1.4302          | 0.2735                  | 0.3026               | 0.2873           | 0.4851                 | 0     |
| 1.1601     | 0.8705          | 0.5728                  | 0.6708               | 0.6180           | 0.7254                 | 1     |
| 0.7538     | 0.7479          | 0.6533                  | 0.7055               | 0.6784           | 0.7572                 | 2     |
| 0.5704     | 0.6795          | 0.6686                  | 0.7582               | 0.7106           | 0.7936                 | 3     |
| 0.4379     | 0.6239          | 0.7022                  | 0.7762               | 0.7374           | 0.8062                 | 4     |
| 0.3470     | 0.6538          | 0.7226                  | 0.7842               | 0.7522           | 0.7986                 | 5     |
| 0.2908     | 0.6827          | 0.7033                  | 0.7777               | 0.7386           | 0.7971                 | 6     |
| 0.2471     | 0.6741          | 0.7311                  | 0.7858               | 0.7574           | 0.8104                 | 7     |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.0