katik0 commited on
Commit
09e90b0
1 Parent(s): a4543e4

Model save

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: layoutlmv3-test
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # layoutlmv3-test
20
+
21
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.8036
24
+ - Precision: 0.8973
25
+ - Recall: 0.9200
26
+ - F1: 0.9085
27
+ - Accuracy: 0.8481
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 1e-05
47
+ - train_batch_size: 8
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - training_steps: 1000
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 5.26 | 100 | 0.5115 | 0.8071 | 0.8624 | 0.8338 | 0.8407 |
59
+ | No log | 10.53 | 200 | 0.4661 | 0.8730 | 0.9086 | 0.8905 | 0.8546 |
60
+ | No log | 15.79 | 300 | 0.5613 | 0.8914 | 0.9091 | 0.9001 | 0.8552 |
61
+ | No log | 21.05 | 400 | 0.6767 | 0.8937 | 0.8982 | 0.8959 | 0.8507 |
62
+ | 0.3022 | 26.32 | 500 | 0.7020 | 0.8935 | 0.9165 | 0.9049 | 0.8626 |
63
+ | 0.3022 | 31.58 | 600 | 0.7108 | 0.9040 | 0.9220 | 0.9129 | 0.8591 |
64
+ | 0.3022 | 36.84 | 700 | 0.7378 | 0.9049 | 0.9175 | 0.9112 | 0.8517 |
65
+ | 0.3022 | 42.11 | 800 | 0.7892 | 0.9026 | 0.9210 | 0.9117 | 0.8537 |
66
+ | 0.3022 | 47.37 | 900 | 0.8133 | 0.8995 | 0.9205 | 0.9099 | 0.8490 |
67
+ | 0.0223 | 52.63 | 1000 | 0.8036 | 0.8973 | 0.9200 | 0.9085 | 0.8481 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.35.2
73
+ - Pytorch 2.1.0+cu121
74
+ - Datasets 2.16.1
75
+ - Tokenizers 0.15.1