Model save
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-test
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# layoutlmv3-test
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.8036
|
24 |
+
- Precision: 0.8973
|
25 |
+
- Recall: 0.9200
|
26 |
+
- F1: 0.9085
|
27 |
+
- Accuracy: 0.8481
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 1000
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 5.26 | 100 | 0.5115 | 0.8071 | 0.8624 | 0.8338 | 0.8407 |
|
59 |
+
| No log | 10.53 | 200 | 0.4661 | 0.8730 | 0.9086 | 0.8905 | 0.8546 |
|
60 |
+
| No log | 15.79 | 300 | 0.5613 | 0.8914 | 0.9091 | 0.9001 | 0.8552 |
|
61 |
+
| No log | 21.05 | 400 | 0.6767 | 0.8937 | 0.8982 | 0.8959 | 0.8507 |
|
62 |
+
| 0.3022 | 26.32 | 500 | 0.7020 | 0.8935 | 0.9165 | 0.9049 | 0.8626 |
|
63 |
+
| 0.3022 | 31.58 | 600 | 0.7108 | 0.9040 | 0.9220 | 0.9129 | 0.8591 |
|
64 |
+
| 0.3022 | 36.84 | 700 | 0.7378 | 0.9049 | 0.9175 | 0.9112 | 0.8517 |
|
65 |
+
| 0.3022 | 42.11 | 800 | 0.7892 | 0.9026 | 0.9210 | 0.9117 | 0.8537 |
|
66 |
+
| 0.3022 | 47.37 | 900 | 0.8133 | 0.8995 | 0.9205 | 0.9099 | 0.8490 |
|
67 |
+
| 0.0223 | 52.63 | 1000 | 0.8036 | 0.8973 | 0.9200 | 0.9085 | 0.8481 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.35.2
|
73 |
+
- Pytorch 2.1.0+cu121
|
74 |
+
- Datasets 2.16.1
|
75 |
+
- Tokenizers 0.15.1
|