---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: one piece
- text: tube
- text: heavy weight
- text: track
- text: unitard
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.5493273542600897
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 119 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------|
| 79 |
- 'peony middle notes'
- 'lemon middle notes'
- 'coconut middle notes'
|
| 86 | - 'no print/no pattern'
- 'two tone'
- 'diagonal stripe'
|
| 37 | - 'eel skin leather'
- 'metal'
- 'raffia'
|
| 82 | - 'collarless'
- 'peaked lapel'
- 'front keyhole'
|
| 95 | - 'standard toe'
- 'wide toe'
- 'extra wide toe'
|
| 83 | |
| 107 | - 'surplice'
- 'messenger bag'
- 'camera bag'
|
| 19 | - 'mary jane'
- 'zip around wallet'
- 'tongue buckle'
|
| 102 | - 'slits at knee'
- 'slits above hips'
- 'front slit at hem'
|
| 35 | - 'tie'
- 'gem embellishment'
- 'caged'
|
| 18 | - 'rolo chain'
- 'cord bracelet'
- 'figaro'
|
| 65 | - 'wheat protein'
- 'rosemary ingredient'
- 'pea protein'
|
| 68 | - 'bath towel'
- 'art print'
- 'reusable bottle'
|
| 40 | - 'polyfill'
- 'silk fill'
- 'feather fill'
|
| 50 | - 'palm grip'
- 'carpenter hook'
- 'storm flap'
|
| 113 | - 'wide waistband'
- 'elastic inset'
- 'belt loops'
|
| 75 | |
| 11 | - 'foam cups'
- 'wire'
- 'molded cups'
|
| 38 | - 'dual layer fabric'
- '2 way stretch'
- '4 way stretch'
|
| 63 | - 'light support'
- 'medium supprt'
- 'high support'
|
| 44 | - 'face'
- 'hand'
- 'neck/dècolletage'
|
| 115 | |
| 42 | - 'regular'
- 'tailored'
- 'fitted'
|
| 97 | |
| 70 | - 'wrist length'
- 'above thigh'
- 'below bust'
|
| 34 | - 'feminine'
- 'religious'
- 'boho'
|
| 10 | |
| 15 | |
| 77 | - 'rose gold metal'
- 'gold plated'
- 'alloy'
|
| 43 | - 'contrast inner lining'
- 'simple seaming'
- 'princess seams'
|
| 7 | - 'neroli base notes'
- 'amber base notes'
- 'musk base notes'
|
| 17 | - 'spot clean'
- 'dry clean'
- 'microwave safe'
|
| 8 | - 'nourishing'
- 'firming'
- 'soothing/healing'
|
| 103 | - 'lugged soles'
- 'non marking soles'
|
| 26 | - 'wall control'
- 'switch control'
|
| 99 | - 'fitted sleeves'
- 'fitted sleeve'
- 'structured sleeves'
|
| 33 | - 'rim'
- 'feet'
- '5 panel construction'
|
| 64 | - 'mineral oil free'
- 'propylene glycol free'
- 'paraffin free'
|
| 96 | - 'double strap'
- 'spaghetti straps'
- 'thin straps'
|
| 1 | - 'shoulder back'
- 'full coverage'
- 'low back'
|
| 62 | - 'rustic'
- 'coastal'
- 'scandinavian'
|
| 39 | - 'metallic'
- 'swiss dot'
- 'base layer'
|
| 60 | - 'halloween'
- 'christmas holiday'
|
| 92 | - 'seamless'
- 'mid rise waist seam'
- 'flat seam'
|
| 114 | - 'ultra high rise'
- 'mid rise'
- 'high waisted'
|
| 105 | - 'top handle'
- 'detachable straps'
- 'chain strap'
|
| 90 | - 'floral'
- 'psychedelic print'
- 'paisley'
|
| 91 | |
| 45 | - 'serum formulation'
- 'cream/creme'
- 'solid'
|
| 59 | - 'strong hold'
- 'flexible hold'
|
| 46 | - 'leather'
- 'fresh aquatic'
- 'green aromatic'
|
| 21 | |
| 69 | - 'cinnamon key notes'
- 'violet key notes'
- 'pepper key notes'
|
| 101 | - 'dropped shoulder'
- 'puff shoulder'
- 'flutter sleeve'
|
| 61 | - 'summer'
- 'everyday'
- 'indoor'
|
| 104 | - 'wedding guest'
- 'bridal'
- 'halloween'
|
| 32 | - 'indigo wash'
- 'acid wash'
- 'stonewash'
|
| 51 | - 'still life graphic'
- 'sports graphic'
- 'star wars'
|
| 48 | - 'beige'
- 'black'
- 'rose gold frame'
|
| 87 | |
| 22 | |
| 41 | - 'matte finish'
- 'shiny finish'
|
| 93 | - 'no buckle'
- 'geometric shape'
- 'straight silhouette'
|
| 71 | - 'polarized'
- 'color tinted'
- 'mirrored'
|
| 2 | - 'split back'
- 'racer back'
- 'open back'
|
| 89 | - 'round stitch pocket'
- 'seam pocket'
- 'kangaroo pocket'
|
| 20 | - 'removable hoodie'
- 'packable hood collar'
- 'hooded'
|
| 52 | |
| 55 | - 'amber head notes'
- 'lime head notes'
- 'musk head notes'
|
| 58 | - 'back curved hem'
- 'twist hem'
- 'ribbed hem'
|
| 118 | - 'light wood'
- 'medium wood'
|
| 25 | - 'gifts for him'
- 'apres ski'
- 'cozy'
|
| 109 | - 'closed toe'
- 'square toe'
- 'round toe'
|
| 30 | - 'extended cuffs'
- 'storm cuffs'
- 'elastic cuff'
|
| 24 | - 'ingrown hairs'
- 'frizz'
- 'redness'
|
| 9 | - 'high cut'
- 'string bikini'
|
| 94 | |
| 16 | - '2 card slot'
- 'card slots'
|
| 78 | - 'gothcore'
- 'vanilla girl'
- 'dyed out'
|
| 4 | |
| 23 | - 'parfum'
- 'eau de toilette'
|
| 111 | |
| 12 | - 'flat brim'
- 'curved brim'
- 'fold over brim'
|
| 98 | - 'dry'
- 'acne prone'
- 'mature'
|
| 57 | - 'stacked heel'
- 'kitten heel'
- 'cone heel'
|
| 67 | - 'id slot'
- 'interior pocket'
- 'interior zipper pocket'
|
| 31 | - 'light wash'
- 'medium wash'
- 'colored'
|
| 85 | - 'detailed stitching pant'
- 'simple seaming'
|
| 116 | - 'knotted'
- 'percale'
- 'waffle weave'
|
| 88 | |
| 74 | - 'study hall'
- 'y2k'
- 'enchanted'
|
| 72 | |
| 108 | |
| 73 | - 'unlined'
- 'fully lined'
- 'partially lined'
|
| 13 | |
| 76 | - 'bpa free material'
- 'scratch resistant material'
|
| 54 | - 'straight handle'
- 'curved handle'
|
| 100 | - 'rolled up sleeves'
- '3/4 sleeve'
- 'bracelet length'
|
| 84 | |
| 14 | |
| 27 | |
| 49 | |
| 29 | - 'tall crown'
- 'short crown'
|
| 106 | - 'low stretch'
- 'non stretch'
|
| 112 | |
| 66 | - 'large interior'
- 'medium interior'
- 'small interior'
|
| 53 | - 'all hair types'
- 'damaged/dry hair'
|
| 117 | - 'light weight'
- 'mid weight'
|
| 81 | - 'low cut'
- 'mid chest neckline'
- 'open front'
|
| 5 | - 'thin band'
- 'soft band elastic'
- 'elastic band'
|
| 28 | - 'flat top crown'
- 'round crown'
- 'no crown'
|
| 56 | - 'ultra high heel'
- 'mid heel'
- 'high heel'
|
| 110 | |
| 47 | |
| 3 | - 'changing pad'
- 'bottle pocket'
|
| 0 | - 'squeeze dispenser'
- 'dropper'
|
| 80 | - 'wall mount'
- 'ceiling mount'
|
| 6 | |
| 36 | - 'exterior pocket'
- 'exterior snap pocket'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.5493 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("kaustubhgap/kaustubh_setfit_1iteration")
# Run inference
preds = model("tube")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 1.7047 | 6 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 2 |
| 1 | 5 |
| 2 | 12 |
| 3 | 2 |
| 4 | 6 |
| 5 | 3 |
| 6 | 2 |
| 7 | 12 |
| 8 | 16 |
| 9 | 2 |
| 10 | 2 |
| 11 | 11 |
| 12 | 4 |
| 13 | 2 |
| 14 | 2 |
| 15 | 2 |
| 16 | 2 |
| 17 | 6 |
| 18 | 9 |
| 19 | 63 |
| 20 | 8 |
| 21 | 31 |
| 22 | 6 |
| 23 | 2 |
| 24 | 13 |
| 25 | 5 |
| 26 | 2 |
| 27 | 2 |
| 28 | 3 |
| 29 | 2 |
| 30 | 13 |
| 31 | 3 |
| 32 | 7 |
| 33 | 22 |
| 34 | 12 |
| 35 | 102 |
| 36 | 2 |
| 37 | 119 |
| 38 | 34 |
| 39 | 32 |
| 40 | 6 |
| 41 | 2 |
| 42 | 13 |
| 43 | 17 |
| 44 | 5 |
| 45 | 10 |
| 46 | 6 |
| 47 | 2 |
| 48 | 10 |
| 49 | 2 |
| 50 | 91 |
| 51 | 13 |
| 52 | 2 |
| 53 | 2 |
| 54 | 2 |
| 55 | 12 |
| 56 | 4 |
| 57 | 7 |
| 58 | 17 |
| 59 | 2 |
| 60 | 2 |
| 61 | 7 |
| 62 | 9 |
| 63 | 3 |
| 64 | 14 |
| 65 | 53 |
| 66 | 3 |
| 67 | 6 |
| 68 | 41 |
| 69 | 41 |
| 70 | 33 |
| 71 | 5 |
| 72 | 5 |
| 73 | 4 |
| 74 | 7 |
| 75 | 49 |
| 76 | 2 |
| 77 | 23 |
| 78 | 11 |
| 79 | 12 |
| 80 | 2 |
| 81 | 5 |
| 82 | 33 |
| 83 | 33 |
| 84 | 2 |
| 85 | 2 |
| 86 | 17 |
| 87 | 2 |
| 88 | 2 |
| 89 | 10 |
| 90 | 29 |
| 91 | 2 |
| 92 | 8 |
| 93 | 21 |
| 94 | 2 |
| 95 | 3 |
| 96 | 5 |
| 97 | 10 |
| 98 | 5 |
| 99 | 6 |
| 100 | 6 |
| 101 | 12 |
| 102 | 13 |
| 103 | 2 |
| 104 | 10 |
| 105 | 28 |
| 106 | 2 |
| 107 | 321 |
| 108 | 2 |
| 109 | 10 |
| 110 | 2 |
| 111 | 2 |
| 112 | 2 |
| 113 | 15 |
| 114 | 4 |
| 115 | 2 |
| 116 | 5 |
| 117 | 2 |
| 118 | 2 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0004 | 1 | 0.2895 | - |
| 0.0225 | 50 | 0.2059 | - |
| 0.0449 | 100 | 0.1794 | - |
| 0.0674 | 150 | 0.1994 | - |
| 0.0898 | 200 | 0.2708 | - |
| 0.1123 | 250 | 0.1355 | - |
| 0.1347 | 300 | 0.0695 | - |
| 0.1572 | 350 | 0.117 | - |
| 0.1796 | 400 | 0.0601 | - |
| 0.2021 | 450 | 0.0873 | - |
| 0.2245 | 500 | 0.07 | - |
| 0.2470 | 550 | 0.0805 | - |
| 0.2694 | 600 | 0.0204 | - |
| 0.2919 | 650 | 0.1059 | - |
| 0.3143 | 700 | 0.1178 | - |
| 0.3368 | 750 | 0.1804 | - |
| 0.3592 | 800 | 0.0979 | - |
| 0.3817 | 850 | 0.1597 | - |
| 0.4041 | 900 | 0.1215 | - |
| 0.4266 | 950 | 0.0188 | - |
| 0.4490 | 1000 | 0.0738 | - |
| 0.4715 | 1050 | 0.0635 | - |
| 0.4939 | 1100 | 0.1439 | - |
| 0.5164 | 1150 | 0.0684 | - |
| 0.5388 | 1200 | 0.0732 | - |
| 0.5613 | 1250 | 0.0401 | - |
| 0.5837 | 1300 | 0.1223 | - |
| 0.6062 | 1350 | 0.1044 | - |
| 0.6286 | 1400 | 0.0717 | - |
| 0.6511 | 1450 | 0.0413 | - |
| 0.6736 | 1500 | 0.0544 | - |
| 0.6960 | 1550 | 0.1419 | - |
| 0.7185 | 1600 | 0.0284 | - |
| 0.7409 | 1650 | 0.0484 | - |
| 0.7634 | 1700 | 0.0049 | - |
| 0.7858 | 1750 | 0.0229 | - |
| 0.8083 | 1800 | 0.0739 | - |
| 0.8307 | 1850 | 0.0371 | - |
| 0.8532 | 1900 | 0.0213 | - |
| 0.8756 | 1950 | 0.0753 | - |
| 0.8981 | 2000 | 0.0359 | - |
| 0.9205 | 2050 | 0.0232 | - |
| 0.9430 | 2100 | 0.0507 | - |
| 0.9654 | 2150 | 0.0258 | - |
| 0.9879 | 2200 | 0.0606 | - |
| 1.0 | 2227 | - | 0.2105 |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.36.1
- PyTorch: 2.0.1+cu118
- Datasets: 2.20.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```