kenhktsui's picture
Add SetFit model
cf843e7 verified
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
datasets:
- zeroshot/twitter-financial-news-sentiment
library_name: setfit
metrics:
- f1
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Listen to our latest #RegionalView, where Regional Economist Alex Marre discusses
economic conditions at a conferen… https://t.co/kPM1I5vMfE'
- text: Peter Thiel Divides Facebook Internally Over Ad Policy (Radio)
- text: '$SCANX: Mid cap notable movers of interest -- Kohl''s (KSS) advances off
of recent lows https://t.co/ZM3fmCoLx5'
- text: US wants China trade deal but won't turn blind eye to Hong Kong, Trump national
security advisor says https://t.co/dvrewpls4T
- text: Salarius Pharma files for equity offering
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: zeroshot/twitter-financial-news-sentiment
type: zeroshot/twitter-financial-news-sentiment
split: test
metrics:
- type: f1
value: 0.6675041876046901
name: F1
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
- **Training Dataset:** [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bullish | <ul><li>'Energy Up As Exxon Cuts CapEx Spending -- Energy Roundup #economy #MarketScreener https://t.co/pZc2wlKsXZ https://t.co/TX2jWQyK1m'</li><li>"Fed's Mester sees U.S. economy performing well, coronavirus a 'big risk' #economy #MarketScreener… https://t.co/fHOfgB9n6R"</li><li>'Merck to raise quarterly dividend by 11% to 61 cents a share'</li></ul> |
| Bearish | <ul><li>'If your household has $250,000, you’re in the top 5%. https://t.co/VslRVqg5zP'</li><li>"$DTEGY $DTEGF - Hungary's 4iG calls off purchase of T-Systems unit https://t.co/mY43nNN45s"</li><li>"Here's what has $ZM stock down over 9% https://t.co/V4ikP0o8cl"</li></ul> |
| Neutral | <ul><li>"How is a bank's GSIB score calculated https://t.co/m7AIabn6U0"</li><li>'$GOOG $GOOGL - Google rivals want EU to investigate vacation rentals https://t.co/8nXAOxhcqG'</li><li>'EU goes into meeting frenzy ahead of February 20 summit on next seven-year budget'</li></ul> |
## Evaluation
### Metrics
| Label | F1 |
|:--------|:-------|
| **all** | 0.6675 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Salarius Pharma files for equity offering")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 3 | 11.1429 | 20 |
| Label | Training Sample Count |
|:--------|:----------------------|
| Bearish | 11 |
| Bullish | 16 |
| Neutral | 15 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:------:|:-------------:|:---------------:|
| 0.0137 | 1 | 0.4046 | - |
| 0.6849 | 50 | 0.1465 | - |
| **1.0** | **73** | **-** | **0.2203** |
| 1.3699 | 100 | 0.002 | - |
| 2.0 | 146 | - | 0.2563 |
| 2.0548 | 150 | 0.0006 | - |
| 2.7397 | 200 | 0.0007 | - |
| 3.0 | 219 | - | 0.2704 |
| 3.4247 | 250 | 0.0006 | - |
| 4.0 | 292 | - | 0.2813 |
| 4.1096 | 300 | 0.0002 | - |
| 4.7945 | 350 | 0.0004 | - |
| 5.0 | 365 | - | 0.2856 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.9.19
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->