|
--- |
|
base_model: sentence-transformers/paraphrase-mpnet-base-v2 |
|
datasets: |
|
- zeroshot/twitter-financial-news-sentiment |
|
library_name: setfit |
|
metrics: |
|
- f1 |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 'Listen to our latest #RegionalView, where Regional Economist Alex Marre discusses |
|
economic conditions at a conferen… https://t.co/kPM1I5vMfE' |
|
- text: Peter Thiel Divides Facebook Internally Over Ad Policy (Radio) |
|
- text: '$SCANX: Mid cap notable movers of interest -- Kohl''s (KSS) advances off |
|
of recent lows https://t.co/ZM3fmCoLx5' |
|
- text: US wants China trade deal but won't turn blind eye to Hong Kong, Trump national |
|
security advisor says https://t.co/dvrewpls4T |
|
- text: Salarius Pharma files for equity offering |
|
inference: true |
|
model-index: |
|
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: zeroshot/twitter-financial-news-sentiment |
|
type: zeroshot/twitter-financial-news-sentiment |
|
split: test |
|
metrics: |
|
- type: f1 |
|
value: 0.6675041876046901 |
|
name: F1 |
|
--- |
|
|
|
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
- **Training Dataset:** [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| Bullish | <ul><li>'Energy Up As Exxon Cuts CapEx Spending -- Energy Roundup #economy #MarketScreener https://t.co/pZc2wlKsXZ https://t.co/TX2jWQyK1m'</li><li>"Fed's Mester sees U.S. economy performing well, coronavirus a 'big risk' #economy #MarketScreener… https://t.co/fHOfgB9n6R"</li><li>'Merck to raise quarterly dividend by 11% to 61 cents a share'</li></ul> | |
|
| Bearish | <ul><li>'If your household has $250,000, you’re in the top 5%. https://t.co/VslRVqg5zP'</li><li>"$DTEGY $DTEGF - Hungary's 4iG calls off purchase of T-Systems unit https://t.co/mY43nNN45s"</li><li>"Here's what has $ZM stock down over 9% https://t.co/V4ikP0o8cl"</li></ul> | |
|
| Neutral | <ul><li>"How is a bank's GSIB score calculated https://t.co/m7AIabn6U0"</li><li>'$GOOG $GOOGL - Google rivals want EU to investigate vacation rentals https://t.co/8nXAOxhcqG'</li><li>'EU goes into meeting frenzy ahead of February 20 summit on next seven-year budget'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | F1 | |
|
|:--------|:-------| |
|
| **all** | 0.6675 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("setfit_model_id") |
|
# Run inference |
|
preds = model("Salarius Pharma files for equity offering") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 11.1429 | 20 | |
|
|
|
| Label | Training Sample Count | |
|
|:--------|:----------------------| |
|
| Bearish | 11 | |
|
| Bullish | 16 | |
|
| Neutral | 15 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (5, 5) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: True |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:------:|:-------------:|:---------------:| |
|
| 0.0137 | 1 | 0.4046 | - | |
|
| 0.6849 | 50 | 0.1465 | - | |
|
| **1.0** | **73** | **-** | **0.2203** | |
|
| 1.3699 | 100 | 0.002 | - | |
|
| 2.0 | 146 | - | 0.2563 | |
|
| 2.0548 | 150 | 0.0006 | - | |
|
| 2.7397 | 200 | 0.0007 | - | |
|
| 3.0 | 219 | - | 0.2704 | |
|
| 3.4247 | 250 | 0.0006 | - | |
|
| 4.0 | 292 | - | 0.2813 | |
|
| 4.1096 | 300 | 0.0002 | - | |
|
| 4.7945 | 350 | 0.0004 | - | |
|
| 5.0 | 365 | - | 0.2856 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
### Framework Versions |
|
- Python: 3.9.19 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.39.0 |
|
- PyTorch: 2.4.0 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.15.2 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |