kenhktsui commited on
Commit
020966b
1 Parent(s): dcd13d4

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
3
+ datasets:
4
+ - zeroshot/twitter-financial-news-sentiment
5
+ library_name: setfit
6
+ metrics:
7
+ - f1
8
+ pipeline_tag: text-classification
9
+ tags:
10
+ - setfit
11
+ - sentence-transformers
12
+ - text-classification
13
+ - generated_from_setfit_trainer
14
+ widget:
15
+ - text: Merck to raise quarterly dividend by 11% to 61 cents a share
16
+ - text: US wants China trade deal but won't turn blind eye to Hong Kong, Trump national
17
+ security advisor says https://t.co/dvrewpls4T
18
+ - text: Molson Coors said to be weighing sale of European business
19
+ - text: $GOOG $GOOGL - Google rivals want EU to investigate vacation rentals https://t.co/8nXAOxhcqG
20
+ - text: Edited Transcript of ASH.N earnings conference call or presentation 19-Nov-19
21
+ 2:00pm GMT
22
+ inference: true
23
+ model-index:
24
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: zeroshot/twitter-financial-news-sentiment
31
+ type: zeroshot/twitter-financial-news-sentiment
32
+ split: test
33
+ metrics:
34
+ - type: f1
35
+ value: 0.6327470686767169
36
+ name: F1
37
+ ---
38
+
39
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 3 classes
56
+ - **Training Dataset:** [zeroshot/twitter-financial-news-sentiment](https://huggingface.co/datasets/zeroshot/twitter-financial-news-sentiment)
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 2 | <ul><li>'Stocks making the biggest moves midday: Amazon, IBM, Delta, Luckin & more https://t.co/ApOoJc0VDJ'</li><li>'Number of shares and voting rights of ADOCIA as of November 30, 2019 https://t.co/v2s9T4YGb0'</li><li>'EU goes into meeting frenzy ahead of February 20 summit on next seven-year budget'</li></ul> |
70
+ | 1 | <ul><li>'Changyou.Com Ltd (CYOU): Hedge Funds Are Snapping Up'</li><li>'CORRECT: Tapestry Q2 Kate Spade sales $430 mln vs. $428 mln; FactSet consensus $420.4 mln'</li><li>'Energy Up As Exxon Cuts CapEx Spending -- Energy Roundup #economy #MarketScreener https://t.co/pZc2wlKsXZ https://t.co/TX2jWQyK1m'</li></ul> |
71
+ | 0 | <ul><li>'$CFPZF - Canfor: Take-Private Bid Significantly Undervalues The Company. Continue reading: https://t.co/xJJJJoJsva… https://t.co/D7EuY5MZ6b'</li><li>"Macy's -6% as hard hats come out for earnings"</li><li>"$DTEGY $DTEGF - Hungary's 4iG calls off purchase of T-Systems unit https://t.co/mY43nNN45s"</li></ul> |
72
+
73
+ ## Evaluation
74
+
75
+ ### Metrics
76
+ | Label | F1 |
77
+ |:--------|:-------|
78
+ | **all** | 0.6327 |
79
+
80
+ ## Uses
81
+
82
+ ### Direct Use for Inference
83
+
84
+ First install the SetFit library:
85
+
86
+ ```bash
87
+ pip install setfit
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+
92
+ ```python
93
+ from setfit import SetFitModel
94
+
95
+ # Download from the 🤗 Hub
96
+ model = SetFitModel.from_pretrained("setfit_model_id")
97
+ # Run inference
98
+ preds = model("Molson Coors said to be weighing sale of European business")
99
+ ```
100
+
101
+ <!--
102
+ ### Downstream Use
103
+
104
+ *List how someone could finetune this model on their own dataset.*
105
+ -->
106
+
107
+ <!--
108
+ ### Out-of-Scope Use
109
+
110
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
111
+ -->
112
+
113
+ <!--
114
+ ## Bias, Risks and Limitations
115
+
116
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
117
+ -->
118
+
119
+ <!--
120
+ ### Recommendations
121
+
122
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
123
+ -->
124
+
125
+ ## Training Details
126
+
127
+ ### Training Set Metrics
128
+ | Training set | Min | Median | Max |
129
+ |:-------------|:----|:--------|:----|
130
+ | Word count | 6 | 12.2619 | 23 |
131
+
132
+ | Label | Training Sample Count |
133
+ |:------|:----------------------|
134
+ | 0 | 9 |
135
+ | 1 | 16 |
136
+ | 2 | 17 |
137
+
138
+ ### Training Hyperparameters
139
+ - batch_size: (16, 16)
140
+ - num_epochs: (5, 5)
141
+ - max_steps: -1
142
+ - sampling_strategy: oversampling
143
+ - body_learning_rate: (2e-05, 1e-05)
144
+ - head_learning_rate: 0.01
145
+ - loss: CosineSimilarityLoss
146
+ - distance_metric: cosine_distance
147
+ - margin: 0.25
148
+ - end_to_end: False
149
+ - use_amp: False
150
+ - warmup_proportion: 0.1
151
+ - seed: 42
152
+ - eval_max_steps: -1
153
+ - load_best_model_at_end: True
154
+
155
+ ### Training Results
156
+ | Epoch | Step | Training Loss | Validation Loss |
157
+ |:-------:|:------:|:-------------:|:---------------:|
158
+ | 0.0139 | 1 | 0.3471 | - |
159
+ | 0.6944 | 50 | 0.151 | - |
160
+ | **1.0** | **72** | **-** | **0.1505** |
161
+ | 1.3889 | 100 | 0.0027 | - |
162
+ | 2.0 | 144 | - | 0.1708 |
163
+ | 2.0833 | 150 | 0.0003 | - |
164
+ | 2.7778 | 200 | 0.0004 | - |
165
+ | 3.0 | 216 | - | 0.1614 |
166
+ | 3.4722 | 250 | 0.0004 | - |
167
+ | 4.0 | 288 | - | 0.166 |
168
+ | 4.1667 | 300 | 0.0004 | - |
169
+ | 4.8611 | 350 | 0.0005 | - |
170
+ | 5.0 | 360 | - | 0.1761 |
171
+
172
+ * The bold row denotes the saved checkpoint.
173
+ ### Framework Versions
174
+ - Python: 3.9.19
175
+ - SetFit: 1.1.0.dev0
176
+ - Sentence Transformers: 3.0.1
177
+ - Transformers: 4.39.0
178
+ - PyTorch: 2.4.0
179
+ - Datasets: 2.20.0
180
+ - Tokenizers: 0.15.2
181
+
182
+ ## Citation
183
+
184
+ ### BibTeX
185
+ ```bibtex
186
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
187
+ doi = {10.48550/ARXIV.2209.11055},
188
+ url = {https://arxiv.org/abs/2209.11055},
189
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
190
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
191
+ title = {Efficient Few-Shot Learning Without Prompts},
192
+ publisher = {arXiv},
193
+ year = {2022},
194
+ copyright = {Creative Commons Attribution 4.0 International}
195
+ }
196
+ ```
197
+
198
+ <!--
199
+ ## Glossary
200
+
201
+ *Clearly define terms in order to be accessible across audiences.*
202
+ -->
203
+
204
+ <!--
205
+ ## Model Card Authors
206
+
207
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
208
+ -->
209
+
210
+ <!--
211
+ ## Model Card Contact
212
+
213
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
214
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "setfit/step_72",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "0",
5
+ "1",
6
+ "2"
7
+ ]
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7045941a87eeff25f63b39a189e121b687461e47a4cc8a8d137ef3758fee6bc
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf7df7390fa5a7d5f3cdc3151c78bc5e37805eecf6512e9766ece70d69e9df62
3
+ size 19295
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "</s>",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff