File size: 4,609 Bytes
891db93
 
 
 
 
 
 
 
fbc88e2
83c5c5a
 
 
 
 
891db93
 
fbc88e2
891db93
fbc88e2
891db93
fbc88e2
 
83c5c5a
fbc88e2
83c5c5a
fbc88e2
 
891db93
 
 
fbc88e2
07cb18b
fbc88e2
 
891db93
fbc88e2
891db93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbc88e2
891db93
 
 
 
c11b0cc
891db93
 
fbc88e2
 
891db93
 
 
 
 
 
 
 
 
fbc88e2
891db93
 
 
ee1ab63
fbc88e2
ee1ab63
fbc88e2
ee1ab63
83c5c5a
 
891db93
fbc88e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
891db93
 
fbc88e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- semantic-search
- character-transformer
- hierarchical-transformer
language:
- en
- grc
---

# shlm-grc-en

## Sentence embeddings for English and Ancient Greek

This model creates sentence embeddings in a shared vector space for Ancient Greek and English text.

The base model uses a modified version of the HLM architecture described in [Heidelberg-Boston @ SIGTYP 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers](https://aclanthology.org/2024.sigtyp-1.16/) ([arXiv](https://arxiv.org/abs/2405.20145))

This model is trained to produce sentence embeddings using the multilingual knowledge distillation method and datasets described in [Sentence Embedding Models for Ancient Greek Using Multilingual Knowledge Distillation](https://aclanthology.org/2023.alp-1.2/) ([arXiv](https://arxiv.org/abs/2308.13116)).

This model was distilled from `BAAI/bge-base-en-v1.5` for embedding English and Ancient Greek text.

## Usage (Sentence-Transformers)

**This model is currently incompatible with the latest version of the sentence-transformers library.**

For now, either use HuggingFace Transformers directly (see below) or the following fork of sentence-transformers:
https://github.com/kevinkrahn/sentence-transformers

You can use the model with sentence-transformers like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('kevinkrahn/shlm-grc-en')
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


def cls_pooling(model_output):
    return model_output[0][:,0]


# Sentences we want sentence embeddings for
sentences = ['This is an English sentence', 'Ὁ Παρθενών ἐστιν ἱερὸν καλὸν τῆς Ἀθήνης.']

# Load model from HuggingFace Hub
model = AutoModel.from_pretrained('kevinkrahn/shlm-grc-en', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('kevinkrahn/shlm-grc-en', trust_remote_code=True)

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, cls pooling.
sentence_embeddings = cls_pooling(model_output)

print("Sentence embeddings:")
print(sentence_embeddings)

```

## Citing & Authors

If you use this model please cite the following papers:

```
@inproceedings{riemenschneider-krahn-2024-heidelberg,
    title = "Heidelberg-Boston @ {SIGTYP} 2024 Shared Task: Enhancing Low-Resource Language Analysis With Character-Aware Hierarchical Transformers",
    author = "Riemenschneider, Frederick  and
      Krahn, Kevin",
    editor = "Hahn, Michael  and
      Sorokin, Alexey  and
      Kumar, Ritesh  and
      Shcherbakov, Andreas  and
      Otmakhova, Yulia  and
      Yang, Jinrui  and
      Serikov, Oleg  and
      Rani, Priya  and
      Ponti, Edoardo M.  and
      Murado{\u{g}}lu, Saliha  and
      Gao, Rena  and
      Cotterell, Ryan  and
      Vylomova, Ekaterina",
    booktitle = "Proceedings of the 6th Workshop on Research in Computational Linguistic Typology and Multilingual NLP",
    month = mar,
    year = "2024",
    address = "St. Julian's, Malta",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.sigtyp-1.16",
    pages = "131--141",
}
```

```
@inproceedings{krahn-etal-2023-sentence,
    title = "Sentence Embedding Models for {A}ncient {G}reek Using Multilingual Knowledge Distillation",
    author = "Krahn, Kevin  and
      Tate, Derrick  and
      Lamicela, Andrew C.",
    editor = "Anderson, Adam  and
      Gordin, Shai  and
      Li, Bin  and
      Liu, Yudong  and
      Passarotti, Marco C.",
    booktitle = "Proceedings of the Ancient Language Processing Workshop",
    month = sep,
    year = "2023",
    address = "Varna, Bulgaria",
    publisher = "INCOMA Ltd., Shoumen, Bulgaria",
    url = "https://aclanthology.org/2023.alp-1.2",
    pages = "13--22",
}

```