File size: 27,827 Bytes
891db93 ee1ab63 891db93 ee1ab63 891db93 ee1ab63 891db93 ee1ab63 891db93 ee1ab63 891db93 ee1ab63 891db93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
import torch
from torch import nn
import torch.nn.functional as F
from dataclasses import dataclass
import copy
from transformers.modeling_outputs import BaseModelOutput, ModelOutput, MaskedLMOutput, TokenClassifierOutput, SequenceClassifierOutput
from transformers.modeling_utils import PreTrainedModel
from transformers import AutoConfig, AutoModel, AutoModelForTokenClassification, AutoModelForMaskedLM, AutoTokenizer, AutoModelForSequenceClassification
from .configuration_hlm import HLMConfig, HLMEncoderConfig
from .tokenization_hlm import HLMTokenizer
from typing import Tuple, Optional, Union
@dataclass
class HLMBaseModelOutput(ModelOutput):
last_hidden_state: torch.FloatTensor = None
hidden_states: Tuple[torch.FloatTensor] = None
attentions: Tuple[torch.FloatTensor] = None # Not currently supported
initial_embeds: torch.FloatTensor = None
initial_word_embeds: torch.FloatTensor = None
intra_word_mask: torch.LongTensor = None
char_embeds: torch.LongTensor = None
input_shape: Tuple[int, int, int, int] = None
class HLMEncoder(nn.Module):
_dynamic_tied_weights_keys = []
def __init__(self, config) -> None:
super().__init__()
if config.sandwich_size > 0:
sandwich_start_index = config.num_hidden_layers // 2 - config.sandwich_size
sandwich_indices = [sandwich_start_index + i*2 + 1 for i in range(config.sandwich_size)]
#print('Sandwich indices:', sandwich_indices)
self.layers = nn.ModuleList([
TransformerBlock(config, bias=i in sandwich_indices) for i in range(config.num_hidden_layers)])
for i in range(config.sandwich_size):
self.layers[sandwich_start_index + i*2+1].make_sandwich(self.layers[sandwich_start_index + i*2])
tied_weights_keys = [
'q.weight',
'k.weight',
'v.weight',
'att_proj_linear.weight',
'ff_linear_1.weight',
'ff_linear_2.weight',
'ff_linear_3.weight',
]
for key in tied_weights_keys:
self._dynamic_tied_weights_keys.append(f'layers.{sandwich_start_index + i*2}.{key}')
else:
self.layers = nn.ModuleList([TransformerBlock(config) for _ in range(config.num_hidden_layers)])
def _get_attention_mask(self, attn_mask, dtype):
if attn_mask.dim() <= 2:
extended_mask = attn_mask.unsqueeze(1).unsqueeze(2)
extended_mask = extended_mask*extended_mask.squeeze(-2).unsqueeze(-1)
elif attn_mask.dim() == 3:
extended_mask = attn_mask.unsqueeze(1)
else:
extended_mask = attn_mask
# Convert to float to avoid zero in denominator of softmax in SDPA, resulting in NaNs
min_dtype = torch.finfo(dtype).min
extended_mask = ((1.0 - extended_mask.float()) * min_dtype)
# SDPA returns NaNs for fully masked rows, so attend to all tokens instead
extended_mask = extended_mask.mul(~torch.all(extended_mask==min_dtype, dim=-1, keepdim=True))
return extended_mask
def forward(self, hidden_states, attention_mask, freqs_cos, freqs_sin, return_dict=True, output_hidden_states=False):
all_hidden_states = []
attn_mask = self._get_attention_mask(attention_mask, hidden_states.dtype)
for i, layer in enumerate(self.layers):
hidden_states = layer(hidden_states, attn_mask, freqs_cos, freqs_sin)
#print(f'layer: {i}, bias: {layer.has_bias}, {hidden_states[0][0][0:2]}')
all_hidden_states.append(hidden_states)
if return_dict:
return BaseModelOutput(
last_hidden_state=all_hidden_states[-1],
hidden_states=all_hidden_states if output_hidden_states else None,
attentions=None,
)
else:
return (all_hidden_states[-1], all_hidden_states) if output_hidden_states else all_hidden_states
class HLMPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = HLMConfig
base_model_prefix = "hlm"
_keys_to_ignore_on_load_unexpected = []
supports_gradient_checkpointing = True
_supports_param_buffer_assignment = False
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class HLMModel(HLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.char_embeddings = nn.Embedding(config.vocab_size, config.intra_word_encoder.hidden_size, padding_idx=0)
self.char_embedding_dropout = nn.Dropout(config.intra_word_encoder.dropout_prob)
if self.config.embedding_size != -1 and self.config.embedding_size != self.config.intra_word_encoder.hidden_size:
self.char_embedding_project = nn.Linear(self.config.embedding_size, self.config.intra_word_encoder.hidden_size, bias=False)
freqs_cos, freqs_sin = precompute_freqs_cis(config.intra_word_encoder.hidden_size // config.intra_word_encoder.num_attention_heads, config.max_seq_length)
self.register_buffer("freqs_cos", freqs_cos)
self.register_buffer("freqs_sin", freqs_sin)
self.word_type_embeddings = nn.Embedding(config.type_vocab_size, config.intra_word_encoder.hidden_size)
self.intra_word_encoder = HLMEncoder(config.intra_word_encoder)
if self.config.intra_word_encoder.hidden_size != self.config.inter_word_encoder.hidden_size:
self.intra_word_project = nn.Linear(self.config.intra_word_encoder.hidden_size, self.config.inter_word_encoder.hidden_size, bias=False)
self.inter_word_encoder = HLMEncoder(config.inter_word_encoder)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.char_embeddings
def set_input_embeddings(self, new_embeddings):
self.char_embeddings = new_embeddings
def forward(self, input_ids, char_input_mask, word_input_mask, word_type_ids=None, combined_word_embeddings: Optional[bool]=False, output_hidden_states: Optional[bool]=False, return_dict: Optional[bool]=True):
input_embeds = self.char_embeddings(input_ids)
input_embeds = self.char_embedding_dropout(input_embeds)
if hasattr(self, "char_embedding_project"):
input_embeds = self.char_embedding_project(input_embeds)
batch_size, num_word, _, _ = input_embeds.shape
num_char = self.config.max_word_length
# reshape to attend to intra-word tokens rather than full sequence
input_embeds = input_embeds.view(batch_size * num_word, num_char, self.config.intra_word_encoder.hidden_size)
intra_word_mask = char_input_mask.view(batch_size * num_word, num_char)
intra_word_output = self.intra_word_encoder(
input_embeds,
intra_word_mask,
self.freqs_cos[:num_char],
self.freqs_sin[:num_char],
output_hidden_states=False,
return_dict=True,
)
initial_embeds = intra_word_output.last_hidden_state
# extract [WORD_CLS] embeddings, which are always at the beginning of each word
initial_word_embeds = initial_embeds[:,0,:]
if word_type_ids is not None:
word_type_embeds = self.word_type_embeddings(word_type_ids)
word_type_embeds = word_type_embeds.view(batch_size * num_word, self.config.intra_word_encoder.hidden_size)
initial_word_embeds = initial_word_embeds + word_type_embeds
if hasattr(self, "intra_word_project"):
initial_embeds = self.intra_word_project(initial_embeds)
# reshape and extract contextualized inter-word representation
word_embeds = initial_word_embeds.view(batch_size, num_word, self.config.inter_word_encoder.hidden_size)
inter_word_output = self.inter_word_encoder(
word_embeds,
word_input_mask,
self.freqs_cos[:num_word],
self.freqs_sin[:num_word],
output_hidden_states=output_hidden_states,
return_dict=True,
)
if combined_word_embeddings:
initial_word_embeds = initial_word_embeds.view(batch_size, num_word, self.config.inter_word_encoder.hidden_size)
contextual_word_embeds = inter_word_output.last_hidden_state
combined_word_embeds = torch.cat([initial_word_embeds, contextual_word_embeds], dim=2)
last_hidden_state = combined_word_embeds
else:
last_hidden_state = inter_word_output.last_hidden_state
if return_dict:
return HLMBaseModelOutput(
last_hidden_state=last_hidden_state,
hidden_states=inter_word_output.hidden_states if output_hidden_states else None,
initial_embeds=initial_embeds,
initial_word_embeds=initial_word_embeds,
intra_word_mask=intra_word_mask,
char_embeds=input_embeds,
input_shape=(batch_size, num_word, num_char, self.config.inter_word_encoder.hidden_size),
)
else:
return (
last_hidden_state,
inter_word_output.hidden_states if output_hidden_states else None,
initial_embeds,
initial_word_embeds,
intra_word_mask,
input_embeds,
(batch_size, num_word, num_char, self.config.inter_word_encoder.hidden_size),
)
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(*shape)
def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(*xq.shape[:-1], -1, 2).unbind(-1)
xk_r, xk_i = xk.float().reshape(*xk.shape[:-1], -1, 2).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
)
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
class TransformerBlock(nn.Module):
def __init__(self, config: HLMEncoderConfig, bias: bool = False):
super().__init__()
self.pad_id = config.pad_token_id
self.drop_p = config.dropout_prob
self.n_heads = config.num_attention_heads
self.d_head = config.hidden_size // config.num_attention_heads
self.has_bias = bias
dim = config.hidden_size
# Attention
self.q = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.k = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.v = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.att_proj_linear = nn.Linear(in_features=dim, out_features=dim, bias=bias)
self.resid_dropout = nn.Dropout(self.drop_p)
# Feedforward layer
self.ff_dropout = nn.Dropout(self.drop_p)
self.ff_linear_1 = nn.Linear(in_features=dim, out_features=config.intermediate_size, bias=bias)
self.ff_linear_2 = nn.Linear(in_features=config.intermediate_size, out_features=dim, bias=bias)
self.ff_linear_3 = nn.Linear(in_features=dim, out_features=config.intermediate_size, bias=bias)
# Pre-layer norms
self.attn_norm = RMSNorm(dim, eps=config.layer_norm_eps)
self.ff_norm = RMSNorm(dim, eps=config.layer_norm_eps)
def make_sandwich(self, other):
assert self.has_bias
assert not other.has_bias
# TODO: change this to support buffers, because it breaks if _supports_param_buffer_assignment == True
# introduced in transformers 4.43 PR: https://github.com/huggingface/transformers/pull/31771
self.q.weight = other.q.weight
self.k.weight = other.k.weight
self.v.weight = other.v.weight
self.att_proj_linear.weight = other.att_proj_linear.weight
self.ff_linear_1.weight = other.ff_linear_1.weight
self.ff_linear_2.weight = other.ff_linear_2.weight
self.ff_linear_3.weight = other.ff_linear_3.weight
def forward(self, x: torch.Tensor, pad_mask: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor):
x = x + self._attention_block(self.attn_norm(x), pad_mask, freqs_cos, freqs_sin)
x = x + self._feedforward_block(self.ff_norm(x))
return x
def _attention_block(self, x: torch.Tensor, attn_mask: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor):
batch_size, seq_len, _ = x.shape
xq, xk, xv = self.q(x), self.k(x), self.v(x)
# Reshape for rotary embeddings
xq = xq.view(batch_size, seq_len, self.n_heads, self.d_head)
xk = xk.view(batch_size, seq_len, self.n_heads, self.d_head)
xv = xv.view(batch_size, seq_len, self.n_heads, self.d_head)
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# Reshape for attention calculation: (b_sz, n_head, s_len, d_head)
xq = xq.transpose(1, 2)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
att = F.scaled_dot_product_attention(
query=xq, key=xk, value=xv,
attn_mask=attn_mask,
dropout_p=self.drop_p if self.training else 0.0,
is_causal=False,
)
# Shape (b_sz, s_len, n_head, d_head)
out = att.transpose(1, 2).contiguous()
out = out.view(batch_size, seq_len, self.n_heads * self.d_head)
return self.resid_dropout(self.att_proj_linear(out))
def _feedforward_block(self, x: torch.Tensor):
# SWiGLU activation
x = self.ff_linear_2(F.silu(self.ff_linear_1(x)) * self.ff_linear_3(x))
x = self.ff_dropout(x)
return x
class HLMForMaskedLM(HLMPreTrainedModel):
_tied_weights_keys = ["cls.decoder.weight", "cls.decoder.bias"]
def __init__(self, config):
super().__init__(config)
# NOTE: This property name must match "base_model_prefix" in the base class
self.hlm = HLMModel(config)
self.cls = HLMLMPredictionHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.decoder = new_embeddings
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
char_input_mask: Optional[torch.Tensor] = None,
word_input_mask: Optional[torch.Tensor] = None,
word_type_ids: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = True,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, num_words, max_chars_per_word)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.hlm(
input_ids,
char_input_mask=char_input_mask,
word_input_mask=word_input_mask,
word_type_ids=word_type_ids,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
combined_word_embeddings=False,
)
prediction_scores = self.cls(outputs,
freqs_cos=self.hlm.freqs_cos[:self.config.max_word_length],
freqs_sin=self.hlm.freqs_sin[:self.config.max_word_length])
masked_lm_loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
else:
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
)
class HLMLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
intra_word_encoder_config = copy.copy(config.intra_word_encoder)
intra_word_encoder_config.num_hidden_layers = 1
intra_word_encoder_config.sandwich_size = 0
self.intra_word_encoder = HLMEncoder(intra_word_encoder_config)
self.residual_word_embedding = getattr(config, 'residual_word_embedding', False)
self.config = config
if self.config.intra_word_encoder.hidden_size != self.config.inter_word_encoder.hidden_size:
self.inter_word_project = nn.Linear(config.inter_word_encoder.hidden_size, self.config.intra_word_encoder.hidden_size, bias=False)
if getattr(config, "tie_word_embeddings", True):
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.intra_word_encoder.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
else:
self.decoder = nn.Linear(config.intra_word_encoder.hidden_size, config.vocab_size)
def forward(self, base_model_output: HLMBaseModelOutput, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor):
batch_size, num_word, _, _ = base_model_output.input_shape
word_embeds = base_model_output.last_hidden_state.reshape(batch_size * num_word, 1, self.config.inter_word_encoder.hidden_size)
if self.residual_word_embedding:
# residual connection between initial word embeddings and contextual word embeddings as mentioned in the paper (section A.3)
word_embeds += base_model_output.initial_word_embeds.unsqueeze(1)
if hasattr(self, "inter_word_project"):
word_embeds = self.inter_word_project(word_embeds)
# concatenate to restore the character-level token sequence
char_embeds = torch.cat([word_embeds, base_model_output.initial_embeds[:,1:,:]], dim=1)
intra_word_output = self.intra_word_encoder(
char_embeds,
base_model_output.intra_word_mask,
freqs_cos, freqs_sin,
output_hidden_states=False,
return_dict=True,
)
char_logits = self.decoder(intra_word_output.last_hidden_state)
batch_size, num_word, num_char, _ = base_model_output.input_shape
char_logits = char_logits.reshape(batch_size, num_word * num_char, -1)
return char_logits
class HLMForTokenClassification(HLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.hlm = HLMModel(config)
self.cls = nn.Linear(config.inter_word_encoder.hidden_size*2, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
char_input_mask: Optional[torch.Tensor] = None,
word_input_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hlm(
input_ids,
char_input_mask=char_input_mask,
word_input_mask=word_input_mask,
output_hidden_states=output_hidden_states,
combined_word_embeddings=True,
)
logits = self.cls(outputs.last_hidden_state)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
class HLMForSequenceClassification(HLMPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.num_labels = getattr(config, 'num_labels', 2)
self.hlm = HLMModel(config)
self.dense = nn.Linear(config.inter_word_encoder.hidden_size, config.inter_word_encoder.hidden_size)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(config.inter_word_encoder.hidden_size, config.num_labels)
#self.activation = SwiGLU()
self.activation = nn.GELU()
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
char_input_mask: Optional[torch.Tensor] = None,
word_input_mask: Optional[torch.Tensor] = None,
word_type_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.hlm(
input_ids,
char_input_mask=char_input_mask,
word_input_mask=word_input_mask,
word_type_ids=word_type_ids,
output_hidden_states=output_hidden_states,
combined_word_embeddings=False,
)
emb = outputs.last_hidden_state[:, 0]
emb = self.dense(emb)
emb = self.activation(emb)
emb = self.dropout(emb)
logits = self.classifier(emb)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
# regression task
loss_fn = nn.MSELoss()
logits = logits.view(-1).to(labels.dtype)
loss = loss_fn(logits, labels.view(-1))
elif labels.dim() == 1 or labels.size(-1) == 1:
label_index = (labels >= 0).nonzero()
labels = labels.long()
if label_index.size(0) > 0:
labeled_logits = torch.gather(
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
)
labels = torch.gather(labels, 0, label_index.view(-1))
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
else:
loss = torch.tensor(0).to(logits)
else:
log_softmax = nn.LogSoftmax(-1)
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
elif self.config.problem_type == "regression":
loss_fct = nn.MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = nn.BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states)
AutoConfig.register("hlm", HLMConfig)
AutoModel.register(HLMConfig, HLMModel)
AutoModelForTokenClassification.register(HLMConfig, HLMForTokenClassification)
AutoModelForSequenceClassification.register(HLMConfig, HLMForSequenceClassification)
AutoModelForMaskedLM.register(HLMConfig, HLMForMaskedLM)
AutoTokenizer.register(HLMConfig, HLMTokenizer)
HLMConfig.register_for_auto_class()
HLMModel.register_for_auto_class("AutoModel")
HLMForMaskedLM.register_for_auto_class("AutoModelForMaskedLM")
HLMForSequenceClassification.register_for_auto_class("AutoModelForSequenceClassification")
HLMForTokenClassification.register_for_auto_class("AutoModelForTokenClassification") |