File size: 2,097 Bytes
c4b7645 dabbad6 f6b65f4 c4b7645 42d8cc2 c389fa0 c4b7645 42d8cc2 c4b7645 42d8cc2 c4b7645 42d8cc2 c4b7645 42d8cc2 c4b7645 42d8cc2 c389fa0 bd6b1d9 c389fa0 bd6b1d9 c389fa0 689905d bd6b1d9 689905d c389fa0 bd6b1d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
library_name: transformers
tags:
- chemistry
- biology
- cheminformatics
- materials science
license: mit
language:
- en
metrics:
- mse
- r_squared
base_model:
- seyonec/ChemBERTa-zinc-base-v1
---
# ChemSolubilityBERTa
## Model Description
ChemSolubilityBERTa is a prototype designed to predict the aqueous solubility of chemical compounds from their SMILES representations. Based on ChemBERTa, a BERT-like transformer-based architecture, ChemBERTa pre-trained on 77M SMILES strings for molecular property prediction. We adapted ChemBERTa to predict solubility values by fine-tuning ChemBERTa with the ESOL (Estimated SOLubility) dataset, a water solubility prediction dataset of 1,128 samples. A user inputs a SMILES string, and the model outputs a log solubility value (log mol/L).
You can read the full paper [here](./01_ChemSolubilityBERTa.pdf).
## Fine-Tuning Details
- Pretrained model: `seyonec/ChemBERTa-zinc-base-v1`
- Dataset: ESOL (delaney-processed)
- Task: Aqueous solubility prediction (log mol/L)
- Number of training epochs: 3
- Batch size: 16
## How to Use
You can use the model to predict solubility for any molecule represented by a SMILES string:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("username/ChemSolubilityBERTa")
model = AutoModelForSequenceClassification.from_pretrained("username/ChemSolubilityBERTa")
smiles_string = "CCO" # Example for ethanol
inputs = tokenizer(smiles_string, return_tensors='pt')
outputs = model(**inputs)
solubility = outputs.logits.item()
print(f"Predicted solubility: {solubility}")
```
## Citation and Usage
If you use ChemSolubilityBERTa in your research or projects, please cite the following:
```bibtex
@misc{ChemSolubilityBERTa,
author = {Farooq Khan},
title = {ChemSolubilityBERTa: A Transformer-Based Model for Predicting Aqueous Solubility from SMILES},
year = {2024},
url = {https://huggingface.co/khanfs/ChemSolubilityBERTa}
}
```
## License
This model is licensed under the [MIT License](https://opensource.org/licenses/MIT). |