File size: 2,070 Bytes
063fa0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ece79fe
 
 
ac48381
ece79fe
ac48381
 
ece79fe
 
ac48381
ece79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: other
language:
- en
base_model:
- meta-llama/Meta-Llama-3.1-8B-Instruct
pipeline_tag: text-generation
inference: false
library_name: transformers
datasets:
- mlabonne/orca-agentinstruct-1M-v1-cleaned
- HuggingFaceTB/smoltalk
- Magpie-Align/Magpie-Qwen2.5-Pro-300K-Filtered
- Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese
- O1-OPEN/OpenO1-SFT
---

> [!TIP]
> This is an experimental model, so it might not perform well for some prompts and may be sensitive to hyper parameters.
> It is mainly trained to enhance reasoning capabilities.

# khulaifi95/Llama-3.1-8B-Reason-Blend-888k


# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_khulaifi95__Llama-3.1-8B-Reason-Blend-888k)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |     |
|IFEval (0-Shot)    |     |
|BBH (3-Shot)       |     |
|MATH Lvl 5 (4-Shot)|     |
|GPQA (0-shot)      |     |
|MuSR (0-shot)      |     |
|MMLU-PRO (5-shot)  |     |

# Prompt Template

This model uses `ChatML` prompt template:

```sh
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````

# How to use

```python

# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="khulaifi95/Llama-3.1-8B-Reason-Blend-888k")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("khulaifi95/Llama-3.1-8B-Reason-Blend-888k")
model = AutoModelForCausalLM.from_pretrained("khulaifi95/Llama-3.1-8B-Reason-Blend-888k")
```

# Ethical Considerations

As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.