--- license: mit language: - ru tags: - russian - classification - toxicity widget: - text: Нелепые лохи недовольны всегда и всем --- Bert-based classifier (finetuned from [rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2)) Merged datasets: - [Russian Language Toxic Comments from 2ch.hk and pikabu.ru](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments) - [Toxic Russian Comments from ok.ru](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments) The datasets split into train, val, test splits in 80-10-10 proportion The metrics obtained from test dataset is as follows: | |precision|recall|f1-score|support| |--------|---------|------|--------|-------| |0 |0.9827 |0.9827|0.9827 |21216 | |1 |0.9272 |0.9274|0.9273 |5054 | | | | | | | |accuracy| | |0.9720 |26270 | |macro avg|0.9550 |0.9550|0.9550 |26270 | |weighted avg|0.9720 |0.9720|0.9720 |26270 | ### Usage ```Python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification PATH = 'khvatov/ru_toxicity_detector' tokenizer = AutoTokenizer.from_pretrained(PATH) model = AutoModelForSequenceClassification.from_pretrained(PATH) # if torch.cuda.is_available(): # model.cuda() model.to(torch.device("cpu")) def get_toxicity_probs(text): with torch.no_grad(): inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device) proba = torch.nn.functional.softmax(model(**inputs).logits, dim=1).cpu().numpy() return proba[0] TEXT = "Марк был хороший" print(f'text = {TEXT}, probs={get_toxicity_probs(TEXT)}') # text = Марк был хороший, probs=[0.9940585 0.00594147] ``` ### Train The model has been trained with Adam optimizer, the learning rate of 2e-5, and batch size of 32 for 3 epochs