--- language: - sv license: apache-2.0 tags: - automatic-speech-recognition - robust-speech-event - hf-asr-leaderboard datasets: - mozilla-foundation/common_voice_8_0 metrics: - wer - cer model-index: - name: wav2vec2-xls-r-300m-swedish results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: mozilla-foundation/common_voice_8_0 name: Common Voice sv-SE args: sv-SE metrics: - type: wer value: 24.73 name: Test WER args: learning_rate: 7.5e-05 train_batch_size: 64 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 128 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear lr_scheduler_warmup_steps: 1000 num_epochs: 50 mixed_precision_training: Native AMP - type: cer value: 7.58 name: Test CER args: learning_rate: 7.5e-05 train_batch_size: 64 eval_batch_size: 8 seed: 42 gradient_accumulation_steps: 2 total_train_batch_size: 128 optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 lr_scheduler_type: linear lr_scheduler_warmup_steps: 1000 num_epochs: 50 mixed_precision_training: Native AMP --- # wav2vec2-large-xls-r-300m-Swedish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.3641 - Wer: 0.2473 - Cer: 0.0758 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 6.1097 | 5.49 | 500 | 3.1422 | 1.0 | 1.0 | | 2.985 | 10.98 | 1000 | 1.7357 | 0.9876 | 0.4125 | | 1.0363 | 16.48 | 1500 | 0.4773 | 0.3510 | 0.1047 | | 0.6111 | 21.97 | 2000 | 0.3937 | 0.2998 | 0.0910 | | 0.4942 | 27.47 | 2500 | 0.3779 | 0.2776 | 0.0844 | | 0.4421 | 32.96 | 3000 | 0.3745 | 0.2630 | 0.0807 | | 0.4018 | 38.46 | 3500 | 0.3685 | 0.2553 | 0.0781 | | 0.3759 | 43.95 | 4000 | 0.3618 | 0.2488 | 0.0761 | | 0.3646 | 49.45 | 4500 | 0.3641 | 0.2473 | 0.0758 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0