File size: 2,168 Bytes
bc3b304
 
 
 
 
85809ea
 
bc3b304
 
 
 
172a2f6
bc3b304
 
 
 
 
 
 
88c3256
bc3b304
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan

This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5270
- Accuracy: 0.88

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.3141        | 1.0   | 112  | 0.6444          | 0.8      |
| 0.3915        | 2.0   | 225  | 0.5292          | 0.85     |
| 0.2685        | 3.0   | 337  | 0.4638          | 0.85     |
| 0.0043        | 4.0   | 450  | 0.6904          | 0.88     |
| 0.124         | 5.0   | 562  | 0.5522          | 0.91     |
| 0.0002        | 6.0   | 675  | 0.4958          | 0.87     |
| 0.0003        | 7.0   | 787  | 0.5430          | 0.87     |
| 0.0001        | 8.0   | 900  | 0.5116          | 0.89     |
| 0.1202        | 9.0   | 1012 | 0.5194          | 0.88     |
| 0.0001        | 9.96  | 1120 | 0.5270          | 0.88     |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3