File size: 3,397 Bytes
a74c8a4
 
1577c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc0b16
a74c8a4
 
1577c41
 
a74c8a4
1577c41
a74c8a4
1577c41
 
1cc0b16
 
 
a74c8a4
1577c41
a74c8a4
1577c41
a74c8a4
1577c41
a74c8a4
1577c41
a74c8a4
1577c41
a74c8a4
1577c41
a74c8a4
1577c41
a74c8a4
1577c41
a74c8a4
1577c41
 
 
 
 
 
 
 
 
 
a74c8a4
1577c41
a74c8a4
1cc0b16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a74c8a4
 
1577c41
a74c8a4
1577c41
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
library_name: transformers
language:
- ne
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- kiranpantha/OpenSLR54-Balanced-Nepali
metrics:
- wer
model-index:
- name: Wave2Vec2-Bert2.0 - Kiran Pantha
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: OpenSLR54
      type: kiranpantha/OpenSLR54-Balanced-Nepali
      config: default
      split: test
      args: 'config: ne, split: train,test'
    metrics:
    - name: Wer
      type: wer
      value: 0.25254629629629627
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Wave2Vec2-Bert2.0 - Kiran Pantha

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the OpenSLR54 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2212
- Wer: 0.2525
- Cer: 0.0565

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.4436        | 0.0900 | 300  | 0.5638          | 0.5560 | 0.1447 |
| 0.5495        | 0.1800 | 600  | 0.6876          | 0.6171 | 0.1641 |
| 0.6148        | 0.2699 | 900  | 0.6872          | 0.6211 | 0.1724 |
| 0.564         | 0.3599 | 1200 | 0.5503          | 0.5162 | 0.1326 |
| 0.4964        | 0.4499 | 1500 | 0.5831          | 0.5319 | 0.1318 |
| 0.4437        | 0.5399 | 1800 | 0.4913          | 0.4935 | 0.1202 |
| 0.4441        | 0.6299 | 2100 | 0.4754          | 0.4764 | 0.1193 |
| 0.3861        | 0.7199 | 2400 | 0.4357          | 0.4361 | 0.1055 |
| 0.3811        | 0.8098 | 2700 | 0.4282          | 0.4137 | 0.0976 |
| 0.3754        | 0.8998 | 3000 | 0.3905          | 0.4069 | 0.0975 |
| 0.3511        | 0.9898 | 3300 | 0.3547          | 0.3692 | 0.0863 |
| 0.2496        | 1.0798 | 3600 | 0.3297          | 0.3433 | 0.0796 |
| 0.242         | 1.1698 | 3900 | 0.3125          | 0.3315 | 0.0770 |
| 0.2378        | 1.2597 | 4200 | 0.3158          | 0.3336 | 0.0757 |
| 0.2274        | 1.3497 | 4500 | 0.2871          | 0.3097 | 0.0722 |
| 0.2142        | 1.4397 | 4800 | 0.3010          | 0.3058 | 0.0712 |
| 0.1949        | 1.5297 | 5100 | 0.2767          | 0.2944 | 0.0678 |
| 0.198         | 1.6197 | 5400 | 0.2487          | 0.2824 | 0.0639 |
| 0.1806        | 1.7097 | 5700 | 0.2376          | 0.2674 | 0.0612 |
| 0.1675        | 1.7996 | 6000 | 0.2293          | 0.2630 | 0.0595 |
| 0.1671        | 1.8896 | 6300 | 0.2248          | 0.2581 | 0.0576 |
| 0.1526        | 1.9796 | 6600 | 0.2212          | 0.2525 | 0.0565 |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1