|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: text2text-generation |
|
--- |
|
|
|
**flan-t5-small-for-classification** |
|
|
|
<img src="https://github.com/Knowledgator/unlimited_classifier/raw/main/images/tree.jpeg" style="display: block; margin: auto;" height="720" width="720"> |
|
|
|
This is an additional fine-tuned [flan-t5-base](https://huggingface.co/google/flan-t5-base) model on many classification datasets. |
|
|
|
The model supports prompt-tuned classification and is suitable for complex classification settings such as resumes classification by criteria. |
|
|
|
You can use the model simply generating the text class name or using our [unlimited-classifier](https://github.com/Knowledgator/unlimited_classifier). |
|
|
|
The library allows to set constraints on generation and classify text into millions of classes. |
|
|
|
### How to use: |
|
|
|
To use it with transformers library take a look into the following code snippet: |
|
```python |
|
# pip install accelerate |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
|
|
tokenizer = T5Tokenizer.from_pretrained("knowledgator/flan-t5-base-for-classification") |
|
model = T5ForConditionalGeneration.from_pretrained("knowledgator/flan-t5-base-for-classification", device_map="auto") |
|
|
|
input_text = "Define sentiment of the following text: I love to travel and someday I will see the world." |
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda") |
|
|
|
outputs = model.generate(input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
**Using unlimited-classifier** |
|
|
|
```python |
|
# pip install unlimited-classifier |
|
|
|
from unlimited_classifier import TextClassifier |
|
|
|
classifier = TextClassifier( |
|
labels=[ |
|
'positive', |
|
'negative', |
|
'neutral' |
|
], |
|
model='knowledgator/flan-t5-base-for-classification', |
|
tokenizer='knowledgator/flan-t5-base-for-classification', |
|
) |
|
output = classifier.invoke(input_text) |
|
print(output) |
|
``` |
|
|