--- base_model: microsoft/mpnet-base datasets: - sentence-transformers/all-nli language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy - dot_accuracy - manhattan_accuracy - euclidean_accuracy - max_accuracy pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:100000 - loss:MultipleNegativesRankingLoss widget: - source_sentence: People on bicycles waiting at an intersection. sentences: - More than one person on a bicycle is obeying traffic laws. - The people are on skateboards. - People waiting at a light on bikes. - source_sentence: A dog is in the water. sentences: - A white dog with brown spots standing in water. - A woman in a white outfit holds her purse while on a crowded bus. - A wakeboarder is traveling across the water behind a ramp. - source_sentence: The people are sleeping. sentences: - A man and young boy asleep in a chair. - A father and his son cuddle while sleeping. - Several people are sitting on the back of a truck outside. - source_sentence: A dog is swimming. sentences: - A brown god relaxes on a brick sidewalk. - The furry brown dog is swimming in the ocean. - a black dog swimming in the water with a tennis ball in his mouth - source_sentence: A dog is swimming. sentences: - A woman in all black throws a football indoors while man looks at his cellphone in the background. - A white dog with a stick in his mouth standing next to a black dog. - A dog with yellow fur swims, neck deep, in water. model-index: - name: MPNet base trained on AllNLI triplets results: - task: type: triplet name: Triplet dataset: name: all nli dev type: all-nli-dev metrics: - type: cosine_accuracy value: 0.9059842041312273 name: Cosine Accuracy - type: dot_accuracy value: 0.09386391251518833 name: Dot Accuracy - type: manhattan_accuracy value: 0.900820170109356 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9017314702308628 name: Euclidean Accuracy - type: max_accuracy value: 0.9059842041312273 name: Max Accuracy - task: type: triplet name: Triplet dataset: name: all nli test type: all-nli-test metrics: - type: cosine_accuracy value: 0.9185958541382963 name: Cosine Accuracy - type: dot_accuracy value: 0.08019367529126949 name: Dot Accuracy - type: manhattan_accuracy value: 0.9142078983204721 name: Manhattan Accuracy - type: euclidean_accuracy value: 0.9142078983204721 name: Euclidean Accuracy - type: max_accuracy value: 0.9185958541382963 name: Max Accuracy --- # MPNet base trained on AllNLI triplets This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("korruz/mpnet-base-all-nli-triplet") # Run inference sentences = [ 'A dog is swimming.', 'A dog with yellow fur swims, neck deep, in water.', 'A white dog with a stick in his mouth standing next to a black dog.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Triplet * Dataset: `all-nli-dev` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:----------| | cosine_accuracy | 0.906 | | dot_accuracy | 0.0939 | | manhattan_accuracy | 0.9008 | | euclidean_accuracy | 0.9017 | | **max_accuracy** | **0.906** | #### Triplet * Dataset: `all-nli-test` * Evaluated with [TripletEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator) | Metric | Value | |:-------------------|:-----------| | cosine_accuracy | 0.9186 | | dot_accuracy | 0.0802 | | manhattan_accuracy | 0.9142 | | euclidean_accuracy | 0.9142 | | **max_accuracy** | **0.9186** | ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 100,000 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy | |:-----:|:----:|:-------------:|:------------------------:|:-------------------------:| | 0 | 0 | - | 0.6832 | - | | 0.032 | 100 | 3.2593 | 0.8010 | - | | 0.064 | 200 | 1.318 | 0.8152 | - | | 0.096 | 300 | 1.2552 | 0.8256 | - | | 0.128 | 400 | 1.3322 | 0.8141 | - | | 0.16 | 500 | 1.4141 | 0.8224 | - | | 0.192 | 600 | 1.2339 | 0.8149 | - | | 0.224 | 700 | 1.2556 | 0.8091 | - | | 0.256 | 800 | 1.138 | 0.8262 | - | | 0.288 | 900 | 1.0928 | 0.8311 | - | | 0.32 | 1000 | 1.0438 | 0.8341 | - | | 0.352 | 1100 | 1.1159 | 0.8323 | - | | 0.384 | 1200 | 1.1909 | 0.8472 | - | | 0.416 | 1300 | 1.2542 | 0.8543 | - | | 0.448 | 1400 | 1.2359 | 0.8574 | - | | 0.48 | 1500 | 1.0265 | 0.8712 | - | | 0.512 | 1600 | 0.8688 | 0.8783 | - | | 0.544 | 1700 | 0.8819 | 0.8841 | - | | 0.576 | 1800 | 0.8903 | 0.8931 | - | | 0.608 | 1900 | 0.9334 | 0.8858 | - | | 0.64 | 2000 | 1.0225 | 0.9028 | - | | 0.672 | 2100 | 0.9252 | 0.9034 | - | | 0.704 | 2200 | 0.9036 | 0.9033 | - | | 0.736 | 2300 | 0.8122 | 0.9040 | - | | 0.768 | 2400 | 0.8503 | 0.9058 | - | | 0.8 | 2500 | 0.8448 | 0.9055 | - | | 0.832 | 2600 | 0.7918 | 0.9039 | - | | 0.864 | 2700 | 0.7787 | 0.9025 | - | | 0.896 | 2800 | 0.8624 | 0.9034 | - | | 0.928 | 2900 | 0.9513 | 0.9058 | - | | 0.96 | 3000 | 0.6548 | 0.9072 | - | | 0.992 | 3100 | 0.0163 | 0.9060 | - | | 1.0 | 3125 | - | - | 0.9186 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.44.2 - PyTorch: 2.4.0+cu121 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```