Automatic Speech Recognition
Transformers
Safetensors
English
Japanese
whisper
audio
hf-asr-leaderboard
Inference Endpoints
asahi417 commited on
Commit
db8843c
•
1 Parent(s): 2952016

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +326 -1
README.md CHANGED
@@ -8,4 +8,329 @@ language:
8
  - ja
9
  pipeline_tag: automatic-speech-recognition
10
  library_name: transformers
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - ja
9
  pipeline_tag: automatic-speech-recognition
10
  library_name: transformers
11
+ tags:
12
+ - audio
13
+ - automatic-speech-recognition
14
+ - hf-asr-leaderboard
15
+ ---
16
+
17
+ # Kotoba-Whisper-Bilingual (v1.0)
18
+
19
+ _Kotoba-Whisper-Bilingual_ is a collection of distilled [Whisper](https://arxiv.org/abs/2212.04356) models trained for
20
+ - **Japanese ASR**
21
+ - **English ASR**
22
+ - **Speech-to-text translation (Japanese -> English)**
23
+ - **Speech-to-text translation (English -> Japanese)**
24
+
25
+ developed through the collaboration bewteen
26
+ [Asahi Ushio](https://asahiushio.com) and [Kotoba Technologies](https://twitter.com/kotoba_tech).
27
+ Following the original work of distil-whisper ([Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430)),
28
+ we employ OpenAI's [Whisper large-v3](https://huggingface.co/openai/whisper-large-v3) as the teacher model for Japanese and English ASR, while we translate the
29
+ transcription into English and Japanese by [chatgpt](https://openai.com/chatgpt/) to obtain training dataset for speech-to-text translation.
30
+ We employ [ReazonSpeech](https://huggingface.co/datasets/japanese-asr/ja_asr.reazon_speech_all) for Japanese ASR and Japanese speech to English text translation,
31
+ and [Multilingual LibriSpeech](https://huggingface.co/datasets/japanese-asr/en_asr.mls) for English ASR and English speech to Japanese text translation.
32
+ Kotoba-whisper-bilingual's loss objective consists of cross-entropy on both of ASR and translation tasks, while KL divergence loss only for ASR task.
33
+ The student model consists the full encoder of the teacher large-v3 model and the decoder with two layers initialized from the first and last layer of the large-v3 model.
34
+
35
+ Kotoba-Whisper is **6.3x faster than large-v3**, while retaining as low error rate as the large-v3.
36
+
37
+ ## Evaluation
38
+
39
+ ### Speech2Text Translation (Japanese->English)
40
+
41
+ | model | [CoVoST2 (Ja->En)](https://huggingface.co/datasets/japanese-asr/ja2en.s2t_translation)| [Fleurs (Ja->En)](https://huggingface.co/datasets/japanese-asr/ja2en.s2t_translation) |
42
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------:|------------------------------------------------------------------------------------------------------:|
43
+ | [kotoba-tech/kotoba-whisper-bilingual-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-bilingual-v1.0) | 73.9 | 98.7 |
44
+ | [japanese-asr/ja-cascaded-s2t-translation](https://huggingface.co/japanese-asr/ja-cascaded-s2t-translation) ([facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B)) | 64.3 | 67.1 |
45
+ | [japanese-asr/ja-cascaded-s2t-translation](https://huggingface.co/japanese-asr/ja-cascaded-s2t-translation) ([facebook/nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B)) | 65.4 | 68.9 |
46
+ | [japanese-asr/ja-cascaded-s2t-translation](https://huggingface.co/japanese-asr/ja-cascaded-s2t-translation) ([facebook/nllb-200-distilled-1.3B](https://huggingface.co/facebook/nllb-200-distilled-1.3B)) | 65.6 | 67.4 |
47
+ | [japanese-asr/ja-cascaded-s2t-translation](https://huggingface.co/japanese-asr/ja-cascaded-s2t-translation) ([facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M)) | 68.2 | 72.2 |
48
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 71 | 86.1 |
49
+ | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 66.4 | 78.8 |
50
+ | [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 66.5 | 86.1 |
51
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 70.3 | 97.2 |
52
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 97.3 | 132.2 |
53
+ | [openai/whisper-base](https://huggingface.co/openai/whisper-base) | 186.2 | 349.6 |
54
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 377.2 | 474 |
55
+
56
+
57
+ ### Speech2Text Translation (English->Japanese)
58
+
59
+ | model | [CoVoST2 (En->Ja)](https://huggingface.co/datasets/japanese-asr/en2ja.s2t_translation)| [Fleurs (En->JA)](https://huggingface.co/datasets/japanese-asr/en2ja.s2t_translation) |
60
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------:|------------------------------------------------------------------------------------------------------:|
61
+ | [kotoba-tech/kotoba-whisper-bilingual-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-bilingual-v1.0) | 69.1 | 74.4 |
62
+ | [japanese-asr/en-cascaded-s2t-translation](https://huggingface.co/japanese-asr/en-cascaded-s2t-translation) ([facebook/nllb-200-3.3B](https://huggingface.co/facebook/nllb-200-3.3B)) | 62.4 | 63.5 |
63
+ | [japanese-asr/en-cascaded-s2t-translation](https://huggingface.co/japanese-asr/en-cascaded-s2t-translation) ([facebook/nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B)) | 64.4 | 67.2 |
64
+ | [japanese-asr/en-cascaded-s2t-translation](https://huggingface.co/japanese-asr/en-cascaded-s2t-translation) ([facebook/nllb-200-distilled-1.3B](https://huggingface.co/facebook/nllb-200-distilled-1.3B)) | 62.4 | 62.9 |
65
+ | [japanese-asr/en-cascaded-s2t-translation](https://huggingface.co/japanese-asr/en-cascaded-s2t-translation) ([facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M)) | 63.4 | 66.2 |
66
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 178.9 | 209.5 |
67
+ | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 179.6 | 201.8 |
68
+ | [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 178.7 | 201.8 |
69
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 178.7 | 202 |
70
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 178.9 | 206.8 |
71
+ | [openai/whisper-base](https://huggingface.co/openai/whisper-base) | 179.5 | 214.2 |
72
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 185.2 | 200.5 |
73
+
74
+
75
+ ### ASR (Japanese)
76
+
77
+ | model | [CommonVoice 8 (Japanese test set)](https://huggingface.co/datasets/japanese-asr/ja_asr.common_voice_8_0) | [JSUT Basic 5000](https://huggingface.co/datasets/japanese-asr/ja_asr.jsut_basic5000) | [ReazonSpeech (held out test set)](https://huggingface.co/datasets/japanese-asr/ja_asr.reazonspeech_test) |
78
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------:|------------------------------------------------------------------------------------------------------------:|
79
+ | [kotoba-tech/kotoba-whisper-bilingual-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-bilingual-v1.0) | 9.8 | 9.3 | 16.8 |
80
+ | [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0) | 9.2 | 8.4 | 11.6 |
81
+ | [kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0) | 9.4 | 8.5 | 12.2 |
82
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 8.5 | 7.1 | 14.9 |
83
+ | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 9.7 | 8.2 | 28.1 |
84
+ | [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 10 | 8.9 | 34.1 |
85
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 11.5 | 10 | 33.2 |
86
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 15.1 | 14.2 | 41.5 |
87
+ | [openai/whisper-base](https://huggingface.co/openai/whisper-base) | 28.6 | 24.9 | 70.4 |
88
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 53.7 | 36.5 | 137.9 |
89
+ | [reazon-research/reazonspeech-nemo-v2](https://huggingface.co/reazon-research/reazonspeech-nemo-v2) | 9.1 | 7.4 | 11.2 |
90
+
91
+
92
+
93
+ ### ASR (English)
94
+
95
+ | model | [ESB](https://huggingface.co/datasets/japanese-asr/en_asr.esb_eval) (ami) | [ESB](https://huggingface.co/datasets/japanese-asr/en_asr.esb_eval) (earnings22) | [ESB](https://huggingface.co/datasets/japanese-asr/en_asr.esb_eval) (librispeech) | [ESB](https://huggingface.co/datasets/japanese-asr/en_asr.esb_eval) (tedlium) | [ESB](https://huggingface.co/datasets/japanese-asr/en_asr.esb_eval) (voxpopuli) |
96
+ |:----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------:|-----------------------------------------------------------------------------------:|------------------------------------------------------------------------------------:|--------------------------------------------------------------------------------:|----------------------------------------------------------------------------------:|
97
+ | [kotoba-tech/kotoba-whisper-bilingual-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-bilingual-v1.0) | 16.7 | 15.3 | 2.4 | 4.1 | 8.3 |
98
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 17.9 | 14.9 | 2.1 | 3.8 | 12.7 |
99
+ | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 18.9 | 16.7 | 2.3 | 4.9 | 7.7 |
100
+ | [openai/whisper-large](https://huggingface.co/openai/whisper-large) | 18.8 | 14.9 | 2.6 | 4.2 | 7.7 |
101
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 18.3 | 14.9 | 2.5 | 4.3 | 7.9 |
102
+ | [openai/whisper-small](https://huggingface.co/openai/whisper-small) | 23.1 | 17.2 | 3.5 | 5.3 | 10.8 |
103
+ | [openai/whisper-base](https://huggingface.co/openai/whisper-base) | 26.6 | 21 | 6 | 6.1 | 11.3 |
104
+ | [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) | 31.9 | 30.5 | 8.2 | 11.7 | 15.1 |
105
+ | [japanese-asr/distil-whisper-bilingual-v1.0](https://huggingface.co/japanese-asr/distil-whisper-bilingual-v1.0) | 20.7 | 18.6 | 2.4 | 6.4 | 10 |
106
+
107
+
108
+
109
+
110
+
111
+
112
+
113
+ - ***Latency***: As kotoba-whisper uses the same architecture as [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3),
114
+ it inherits the benefit of the improved latency compared to [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3)
115
+ (**6.3x faster than large-v3**, see the table below taken from [distil-whisper/distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)).
116
+
117
+ | Model | Params / M | Rel. Latency |
118
+ |----------------------------------------------------------------------------------------------|------------|--------------|
119
+ | **[kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0)**| **756** | **6.3** |
120
+ | **[kotoba-tech/kotoba-whisper-v1.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0)**| **756** | **6.3** |
121
+ | [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 1550 | 1.0 |
122
+
123
+
124
+ ## Transformers Usage
125
+ Kotoba-Whisper is supported in the Hugging Face 🤗 Transformers library from version 4.39 onwards. To run the model, first
126
+ install the latest version of Transformers.
127
+
128
+ ```bash
129
+ pip install --upgrade pip
130
+ pip install --upgrade transformers accelerate
131
+ ```
132
+
133
+ ### Short-Form Transcription
134
+ The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
135
+ class to transcribe short-form audio files (< 30-seconds) as follows:
136
+
137
+ Download sample audio.
138
+ ```shell
139
+ wget
140
+ ```
141
+
142
+ ```python
143
+ import torch
144
+ from transformers import pipeline
145
+ from datasets import load_dataset
146
+
147
+ # config
148
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
149
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
150
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
151
+
152
+ # load model
153
+ pipe = pipeline(
154
+ "automatic-speech-recognition",
155
+ model="kotoba-tech/kotoba-whisper-bilingual-v1.0",
156
+ torch_dtype=torch_dtype,
157
+ device=device,
158
+ model_kwargs=model_kwargs
159
+ )
160
+
161
+
162
+ generate_kwargs = {"language": "ja", "task": "transcribe"}
163
+
164
+ # load sample audio
165
+ dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
166
+ sample = dataset[0]["audio"]
167
+
168
+ # run inference
169
+ result = pipe(sample, generate_kwargs=generate_kwargs)
170
+ print(result["text"])
171
+ ```
172
+
173
+ - To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline (make sure the audio is sampled in 16kHz):
174
+ ```diff
175
+ - result = pipe(sample, generate_kwargs=generate_kwargs)
176
+ + result = pipe("audio.mp3", generate_kwargs=generate_kwargs)
177
+ ```
178
+
179
+ - For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
180
+ ```python
181
+ result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
182
+ print(result["chunks"])
183
+ ```
184
+
185
+ ***Sequential Long-Form:*** Kotoba-whisper is designed to be compatible with OpenAI's sequential long-form transcription algorithm. This algorithm uses a sliding window for buffered
186
+ inference of long audio files (> 30-seconds), and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
187
+ As default, if long audio files are passed to the model, it will transcribes with the sequential long-form transcription.
188
+ The sequential long-form algorithm should be used in either of the following scenarios:
189
+
190
+ 1. Transcription accuracy is the most important factor, and latency is less of a consideration
191
+ 2. You are transcribing **batches** of long audio files, in which case the latency of sequential is comparable to chunked, while being up to 0.5% WER more accurate
192
+
193
+ If you are transcribing single long audio files and latency is the most important factor, you should use the chunked algorithm
194
+ described [below](#chunked-long-form). For a detailed explanation of the different algorithms, refer to Sections 5 of
195
+ the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf). The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
196
+ class can be used to transcribe long audio files with the sequential algorithm as follows:
197
+
198
+
199
+ ### Chunked Long-Form
200
+ This algorithm should be used when a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
201
+ the chunked algorithm is up to 9x faster than OpenAI's sequential long-form implementation (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf)).
202
+ To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For distil-large-v3, a chunk length of 25-seconds
203
+ is optimal. To activate batching over long audio files, pass the argument `batch_size`:
204
+
205
+ ```python
206
+ import torch
207
+ from transformers import pipeline
208
+ from datasets import load_dataset
209
+
210
+ # config
211
+ model_id = "kotoba-tech/kotoba-whisper-v2.0"
212
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
213
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
214
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
215
+ generate_kwargs = {"language": "ja", "task": "transcribe"}
216
+
217
+ # load model
218
+ pipe = pipeline(
219
+ "automatic-speech-recognition",
220
+ model=model_id,
221
+ torch_dtype=torch_dtype,
222
+ device=device,
223
+ model_kwargs=model_kwargs,
224
+ chunk_length_s=15,
225
+ batch_size=16
226
+ )
227
+
228
+ # load sample audio (concatenate instances to create a long audio)
229
+ dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
230
+ sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate']}
231
+
232
+ # run inference
233
+ result = pipe(sample, generate_kwargs=generate_kwargs)
234
+ print(result["text"])
235
+ ```
236
+
237
+
238
+ ### Additional Speed & Memory Improvements
239
+ You can apply additional speed and memory improvements to further reduce the inference speed and VRAM
240
+ requirements. These optimisations primarily target the attention kernel, swapping it from an eager implementation to a
241
+ more efficient flash attention version.
242
+
243
+ #### Flash Attention 2
244
+
245
+ We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2)
246
+ if your GPU allows for it. To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
247
+
248
+ ```
249
+ pip install flash-attn --no-build-isolation
250
+ ```
251
+
252
+ Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
253
+
254
+ ```diff
255
+ - model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
256
+ + model_kwargs = {"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}
257
+ ```
258
+
259
+
260
+ ## Model Details
261
+ See [https://huggingface.co/distil-whisper/distil-large-v3#model-details](https://huggingface.co/distil-whisper/distil-large-v3#model-details).
262
+
263
+
264
+ ## Training
265
+ Please refer to [https://github.com/kotoba-tech/kotoba-whisper](https://github.com/kotoba-tech/kotoba-whisper) for the model training detail.
266
+ Datasets used in distillation and the whole model variations can be found at [https://huggingface.co/japanese-asr](https://huggingface.co/japanese-asr).
267
+
268
+
269
+ ## Evaluation
270
+ The following code-snippets demonstrates how to evaluate the kotoba-whisper model on the Japanese subset of the CommonVoice 8.0.
271
+ First, we need to install the required packages, including 🤗 Datasets to load the audio data, and 🤗 Evaluate to
272
+ perform the WER calculation:
273
+
274
+ ```bash
275
+ pip install --upgrade pip
276
+ pip install --upgrade transformers datasets[audio] evaluate jiwer
277
+ ```
278
+
279
+ Evaluation can then be run end-to-end with the following example:
280
+
281
+ ```python
282
+ import torch
283
+ from transformers import pipeline
284
+ from datasets import load_dataset
285
+ from evaluate import load
286
+ from transformers.models.whisper.english_normalizer import BasicTextNormalizer
287
+
288
+ # model config
289
+ model_id = "kotoba-tech/kotoba-whisper-v2.0"
290
+ torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
291
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
292
+ model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
293
+ generate_kwargs = {"language": "japanese", "task": "transcribe"}
294
+ normalizer = BasicTextNormalizer()
295
+
296
+ # data config
297
+ dataset_name = "japanese-asr/ja_asr.reazonspeech_test"
298
+ audio_column = 'audio'
299
+ text_column = 'transcription'
300
+
301
+ # load model
302
+ pipe = pipeline(
303
+ "automatic-speech-recognition",
304
+ model=model_id,
305
+ torch_dtype=torch_dtype,
306
+ device=device,
307
+ model_kwargs=model_kwargs,
308
+ batch_size=16
309
+ )
310
+
311
+ # load the dataset and sample the audio with 16kHz
312
+ dataset = load_dataset(dataset_name, split="test")
313
+ transcriptions = pipe(dataset['audio'])
314
+ transcriptions = [normalizer(i['text']).replace(" ", "") for i in transcriptions]
315
+ references = [normalizer(i).replace(" ", "") for i in dataset['transcription']]
316
+
317
+ # compute the CER metric
318
+ cer_metric = load("cer")
319
+ cer = 100 * cer_metric.compute(predictions=transcriptions, references=references)
320
+ print(cer)
321
+ ```
322
+
323
+ The huggingface links to the major Japanese ASR datasets for evaluation are summarized at [here](https://huggingface.co/collections/japanese-asr/japanese-asr-evaluation-dataset-66051a03d6ca494d40baaa26).
324
+ For example, to evaluate the model on JSUT Basic5000, change the `dataset_name`:
325
+
326
+ ```diff
327
+ - dataset_name = "japanese-asr/ja_asr.reazonspeech_test"
328
+ + dataset_name = "japanese-asr/ja_asr.jsut_basic5000"
329
+ ```
330
+
331
+ ## Acknowledgements
332
+ * [OpenAI](https://openai.com/) for the Whisper [model](https://huggingface.co/openai/whisper-large-v3).
333
+ * Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration.
334
+ * Hugging Face 🤗 for the [Distil-Whisper codebase](https://github.com/huggingface/distil-whisper).
335
+ * [Reazon Human Interaction Lab](https://research.reazon.jp/) for the [ReazonSpeech dataset](https://huggingface.co/datasets/reazon-research/reazonspeech).
336
+