--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Constitutional changes prohibit selling agricultural land to foreigners. - text: Administrative procedures for outward direct investments were simplified. Direct investment projects no longer have to be referred to the CBC for verification of genuineness prior to the transfer of funds through authorized dealers, unless the required amount exceeds £C 5 million a year. - text: In addition, nonbank corporation which borrow abroad must fulfill certain credit rating criteria. - text: The threshold above which there are no controls on direct investments by companies not listed publicly was reduced to 50% of capital from two-thirds. In the case of companies whose shares are listed on the stock exchange, the threshold was increased to 50% of capital from 20%. - text: The limits on purchases of foreign securities by insurance companies were increased to 30% from 25% of technical provisions and risk capital reserves. inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.828125 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:--------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral | | | loosen | | | tighten | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8281 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("kteoh37/setfit_sectionxi_changes_100_examples") # Run inference preds = model("Constitutional changes prohibit selling agricultural land to foreigners.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 6 | 38.4936 | 225 | | Label | Training Sample Count | |:--------|:----------------------| | loosen | 100 | | tighten | 100 | | neutral | 35 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:--------:|:-------------:|:---------------:| | 0.0005 | 1 | 0.2629 | - | | 0.0235 | 50 | 0.2148 | - | | 0.0471 | 100 | 0.2342 | - | | 0.0706 | 150 | 0.2326 | - | | 0.0941 | 200 | 0.2391 | - | | 0.1176 | 250 | 0.2351 | - | | 0.1412 | 300 | 0.1484 | - | | 0.1647 | 350 | 0.1034 | - | | 0.1882 | 400 | 0.123 | - | | 0.2118 | 450 | 0.064 | - | | 0.2353 | 500 | 0.0697 | - | | 0.2588 | 550 | 0.0367 | - | | 0.2824 | 600 | 0.0695 | - | | 0.3059 | 650 | 0.0044 | - | | 0.3294 | 700 | 0.009 | - | | 0.3529 | 750 | 0.0027 | - | | 0.3765 | 800 | 0.0012 | - | | 0.4 | 850 | 0.0609 | - | | 0.4235 | 900 | 0.0019 | - | | 0.4471 | 950 | 0.0013 | - | | 0.4706 | 1000 | 0.0031 | - | | 0.4941 | 1050 | 0.0004 | - | | 0.5176 | 1100 | 0.0029 | - | | 0.5412 | 1150 | 0.001 | - | | 0.5647 | 1200 | 0.0018 | - | | 0.5882 | 1250 | 0.0023 | - | | 0.6118 | 1300 | 0.0003 | - | | 0.6353 | 1350 | 0.0007 | - | | 0.6588 | 1400 | 0.0204 | - | | 0.6824 | 1450 | 0.0486 | - | | 0.7059 | 1500 | 0.0056 | - | | 0.7294 | 1550 | 0.0003 | - | | 0.7529 | 1600 | 0.0052 | - | | 0.7765 | 1650 | 0.0033 | - | | 0.8 | 1700 | 0.0021 | - | | 0.8235 | 1750 | 0.0003 | - | | 0.8471 | 1800 | 0.0111 | - | | 0.8706 | 1850 | 0.0003 | - | | 0.8941 | 1900 | 0.0531 | - | | 0.9176 | 1950 | 0.0075 | - | | 0.9412 | 2000 | 0.0003 | - | | 0.9647 | 2050 | 0.0022 | - | | 0.9882 | 2100 | 0.0006 | - | | **1.0** | **2125** | **-** | **0.1384** | | 1.0118 | 2150 | 0.0001 | - | | 1.0353 | 2200 | 0.0001 | - | | 1.0588 | 2250 | 0.0011 | - | | 1.0824 | 2300 | 0.0001 | - | | 1.1059 | 2350 | 0.0002 | - | | 1.1294 | 2400 | 0.0 | - | | 1.1529 | 2450 | 0.0002 | - | | 1.1765 | 2500 | 0.0003 | - | | 1.2 | 2550 | 0.0116 | - | | 1.2235 | 2600 | 0.0002 | - | | 1.2471 | 2650 | 0.0002 | - | | 1.2706 | 2700 | 0.0001 | - | | 1.2941 | 2750 | 0.0002 | - | | 1.3176 | 2800 | 0.0 | - | | 1.3412 | 2850 | 0.0132 | - | | 1.3647 | 2900 | 0.0265 | - | | 1.3882 | 2950 | 0.0035 | - | | 1.4118 | 3000 | 0.0003 | - | | 1.4353 | 3050 | 0.0022 | - | | 1.4588 | 3100 | 0.0013 | - | | 1.4824 | 3150 | 0.0006 | - | | 1.5059 | 3200 | 0.0003 | - | | 1.5294 | 3250 | 0.0 | - | | 1.5529 | 3300 | 0.0198 | - | | 1.5765 | 3350 | 0.0001 | - | | 1.6 | 3400 | 0.0 | - | | 1.6235 | 3450 | 0.0001 | - | | 1.6471 | 3500 | 0.0 | - | | 1.6706 | 3550 | 0.0 | - | | 1.6941 | 3600 | 0.0002 | - | | 1.7176 | 3650 | 0.0 | - | | 1.7412 | 3700 | 0.0 | - | | 1.7647 | 3750 | 0.0023 | - | | 1.7882 | 3800 | 0.0 | - | | 1.8118 | 3850 | 0.0074 | - | | 1.8353 | 3900 | 0.0004 | - | | 1.8588 | 3950 | 0.0001 | - | | 1.8824 | 4000 | 0.0228 | - | | 1.9059 | 4050 | 0.0256 | - | | 1.9294 | 4100 | 0.0316 | - | | 1.9529 | 4150 | 0.0001 | - | | 1.9765 | 4200 | 0.0 | - | | 2.0 | 4250 | 0.0 | 0.1386 | | 2.0235 | 4300 | 0.0006 | - | | 2.0471 | 4350 | 0.0001 | - | | 2.0706 | 4400 | 0.0072 | - | | 2.0941 | 4450 | 0.0433 | - | | 2.1176 | 4500 | 0.0001 | - | | 2.1412 | 4550 | 0.0004 | - | | 2.1647 | 4600 | 0.0 | - | | 2.1882 | 4650 | 0.0024 | - | | 2.2118 | 4700 | 0.0 | - | | 2.2353 | 4750 | 0.0001 | - | | 2.2588 | 4800 | 0.0 | - | | 2.2824 | 4850 | 0.0002 | - | | 2.3059 | 4900 | 0.0001 | - | | 2.3294 | 4950 | 0.0 | - | | 2.3529 | 5000 | 0.002 | - | | 2.3765 | 5050 | 0.0303 | - | | 2.4 | 5100 | 0.0799 | - | | 2.4235 | 5150 | 0.0001 | - | | 2.4471 | 5200 | 0.0 | - | | 2.4706 | 5250 | 0.0024 | - | | 2.4941 | 5300 | 0.0001 | - | | 2.5176 | 5350 | 0.0138 | - | | 2.5412 | 5400 | 0.0 | - | | 2.5647 | 5450 | 0.0001 | - | | 2.5882 | 5500 | 0.0 | - | | 2.6118 | 5550 | 0.0 | - | | 2.6353 | 5600 | 0.0 | - | | 2.6588 | 5650 | 0.0 | - | | 2.6824 | 5700 | 0.0396 | - | | 2.7059 | 5750 | 0.0001 | - | | 2.7294 | 5800 | 0.0 | - | | 2.7529 | 5850 | 0.0002 | - | | 2.7765 | 5900 | 0.0001 | - | | 2.8 | 5950 | 0.0037 | - | | 2.8235 | 6000 | 0.0 | - | | 2.8471 | 6050 | 0.0186 | - | | 2.8706 | 6100 | 0.0043 | - | | 2.8941 | 6150 | 0.0315 | - | | 2.9176 | 6200 | 0.0144 | - | | 2.9412 | 6250 | 0.0 | - | | 2.9647 | 6300 | 0.0052 | - | | 2.9882 | 6350 | 0.0003 | - | | 3.0 | 6375 | - | 0.1526 | | 3.0118 | 6400 | 0.0 | - | | 3.0353 | 6450 | 0.0002 | - | | 3.0588 | 6500 | 0.0011 | - | | 3.0824 | 6550 | 0.0 | - | | 3.1059 | 6600 | 0.0 | - | | 3.1294 | 6650 | 0.0002 | - | | 3.1529 | 6700 | 0.0001 | - | | 3.1765 | 6750 | 0.0002 | - | | 3.2 | 6800 | 0.0191 | - | | 3.2235 | 6850 | 0.0001 | - | | 3.2471 | 6900 | 0.0 | - | | 3.2706 | 6950 | 0.0036 | - | | 3.2941 | 7000 | 0.0001 | - | | 3.3176 | 7050 | 0.0197 | - | | 3.3412 | 7100 | 0.0101 | - | | 3.3647 | 7150 | 0.0 | - | | 3.3882 | 7200 | 0.0 | - | | 3.4118 | 7250 | 0.0003 | - | | 3.4353 | 7300 | 0.0001 | - | | 3.4588 | 7350 | 0.0 | - | | 3.4824 | 7400 | 0.0001 | - | | 3.5059 | 7450 | 0.0174 | - | | 3.5294 | 7500 | 0.0 | - | | 3.5529 | 7550 | 0.0 | - | | 3.5765 | 7600 | 0.0 | - | | 3.6 | 7650 | 0.0 | - | | 3.6235 | 7700 | 0.0012 | - | | 3.6471 | 7750 | 0.0 | - | | 3.6706 | 7800 | 0.0 | - | | 3.6941 | 7850 | 0.0 | - | | 3.7176 | 7900 | 0.0 | - | | 3.7412 | 7950 | 0.0 | - | | 3.7647 | 8000 | 0.0 | - | | 3.7882 | 8050 | 0.0 | - | | 3.8118 | 8100 | 0.0 | - | | 3.8353 | 8150 | 0.0004 | - | | 3.8588 | 8200 | 0.0 | - | | 3.8824 | 8250 | 0.0154 | - | | 3.9059 | 8300 | 0.0201 | - | | 3.9294 | 8350 | 0.0332 | - | | 3.9529 | 8400 | 0.0 | - | | 3.9765 | 8450 | 0.0002 | - | | 4.0 | 8500 | 0.0028 | 0.1434 | | 4.0235 | 8550 | 0.0001 | - | | 4.0471 | 8600 | 0.0 | - | | 4.0706 | 8650 | 0.0077 | - | | 4.0941 | 8700 | 0.0435 | - | | 4.1176 | 8750 | 0.0 | - | | 4.1412 | 8800 | 0.0001 | - | | 4.1647 | 8850 | 0.0 | - | | 4.1882 | 8900 | 0.0024 | - | | 4.2118 | 8950 | 0.0 | - | | 4.2353 | 9000 | 0.0 | - | | 4.2588 | 9050 | 0.0 | - | | 4.2824 | 9100 | 0.0002 | - | | 4.3059 | 9150 | 0.0 | - | | 4.3294 | 9200 | 0.0263 | - | | 4.3529 | 9250 | 0.0 | - | | 4.3765 | 9300 | 0.0 | - | | 4.4 | 9350 | 0.0416 | - | | 4.4235 | 9400 | 0.0 | - | | 4.4471 | 9450 | 0.0061 | - | | 4.4706 | 9500 | 0.0121 | - | | 4.4941 | 9550 | 0.0001 | - | | 4.5176 | 9600 | 0.0187 | - | | 4.5412 | 9650 | 0.0 | - | | 4.5647 | 9700 | 0.0 | - | | 4.5882 | 9750 | 0.0 | - | | 4.6118 | 9800 | 0.0 | - | | 4.6353 | 9850 | 0.0 | - | | 4.6588 | 9900 | 0.0117 | - | | 4.6824 | 9950 | 0.0367 | - | | 4.7059 | 10000 | 0.006 | - | | 4.7294 | 10050 | 0.0 | - | | 4.7529 | 10100 | 0.0002 | - | | 4.7765 | 10150 | 0.0003 | - | | 4.8 | 10200 | 0.0 | - | | 4.8235 | 10250 | 0.0 | - | | 4.8471 | 10300 | 0.0085 | - | | 4.8706 | 10350 | 0.0 | - | | 4.8941 | 10400 | 0.0369 | - | | 4.9176 | 10450 | 0.0091 | - | | 4.9412 | 10500 | 0.0 | - | | 4.9647 | 10550 | 0.0 | - | | 4.9882 | 10600 | 0.0 | - | | 5.0 | 10625 | - | 0.1711 | | 5.0118 | 10650 | 0.0 | - | | 5.0353 | 10700 | 0.0 | - | | 5.0588 | 10750 | 0.0 | - | | 5.0824 | 10800 | 0.0238 | - | | 5.1059 | 10850 | 0.0 | - | | 5.1294 | 10900 | 0.0075 | - | | 5.1529 | 10950 | 0.0 | - | | 5.1765 | 11000 | 0.0 | - | | 5.2 | 11050 | 0.0179 | - | | 5.2235 | 11100 | 0.0 | - | | 5.2471 | 11150 | 0.0 | - | | 5.2706 | 11200 | 0.0171 | - | | 5.2941 | 11250 | 0.0002 | - | | 5.3176 | 11300 | 0.0 | - | | 5.3412 | 11350 | 0.0128 | - | | 5.3647 | 11400 | 0.0 | - | | 5.3882 | 11450 | 0.0029 | - | | 5.4118 | 11500 | 0.0 | - | | 5.4353 | 11550 | 0.0 | - | | 5.4588 | 11600 | 0.0 | - | | 5.4824 | 11650 | 0.0 | - | | 5.5059 | 11700 | 0.0 | - | | 5.5294 | 11750 | 0.0 | - | | 5.5529 | 11800 | 0.0 | - | | 5.5765 | 11850 | 0.0001 | - | | 5.6 | 11900 | 0.0001 | - | | 5.6235 | 11950 | 0.0001 | - | | 5.6471 | 12000 | 0.0 | - | | 5.6706 | 12050 | 0.0001 | - | | 5.6941 | 12100 | 0.0 | - | | 5.7176 | 12150 | 0.0 | - | | 5.7412 | 12200 | 0.0 | - | | 5.7647 | 12250 | 0.0 | - | | 5.7882 | 12300 | 0.006 | - | | 5.8118 | 12350 | 0.0001 | - | | 5.8353 | 12400 | 0.0042 | - | | 5.8588 | 12450 | 0.0001 | - | | 5.8824 | 12500 | 0.0 | - | | 5.9059 | 12550 | 0.017 | - | | 5.9294 | 12600 | 0.0282 | - | | 5.9529 | 12650 | 0.0 | - | | 5.9765 | 12700 | 0.0046 | - | | 6.0 | 12750 | 0.0 | 0.1451 | | 6.0235 | 12800 | 0.0001 | - | | 6.0471 | 12850 | 0.0002 | - | | 6.0706 | 12900 | 0.0625 | - | | 6.0941 | 12950 | 0.0633 | - | | 6.1176 | 13000 | 0.0598 | - | | 6.1412 | 13050 | 0.0001 | - | | 6.1647 | 13100 | 0.0012 | - | | 6.1882 | 13150 | 0.0004 | - | | 6.2118 | 13200 | 0.0 | - | | 6.2353 | 13250 | 0.0002 | - | | 6.2588 | 13300 | 0.0 | - | | 6.2824 | 13350 | 0.0608 | - | | 6.3059 | 13400 | 0.0006 | - | | 6.3294 | 13450 | 0.0 | - | | 6.3529 | 13500 | 0.0587 | - | | 6.3765 | 13550 | 0.0003 | - | | 6.4 | 13600 | 0.0429 | - | | 6.4235 | 13650 | 0.0 | - | | 6.4471 | 13700 | 0.0 | - | | 6.4706 | 13750 | 0.0001 | - | | 6.4941 | 13800 | 0.0 | - | | 6.5176 | 13850 | 0.0135 | - | | 6.5412 | 13900 | 0.019 | - | | 6.5647 | 13950 | 0.0028 | - | | 6.5882 | 14000 | 0.0 | - | | 6.6118 | 14050 | 0.0 | - | | 6.6353 | 14100 | 0.0169 | - | | 6.6588 | 14150 | 0.0167 | - | | 6.6824 | 14200 | 0.0375 | - | | 6.7059 | 14250 | 0.0 | - | | 6.7294 | 14300 | 0.0044 | - | | 6.7529 | 14350 | 0.0 | - | | 6.7765 | 14400 | 0.0 | - | | 6.8 | 14450 | 0.0025 | - | | 6.8235 | 14500 | 0.0033 | - | | 6.8471 | 14550 | 0.0145 | - | | 6.8706 | 14600 | 0.0 | - | | 6.8941 | 14650 | 0.0346 | - | | 6.9176 | 14700 | 0.0117 | - | | 6.9412 | 14750 | 0.0001 | - | | 6.9647 | 14800 | 0.0 | - | | 6.9882 | 14850 | 0.0 | - | | 7.0 | 14875 | - | 0.1828 | | 7.0118 | 14900 | 0.0 | - | | 7.0353 | 14950 | 0.0 | - | | 7.0588 | 15000 | 0.0031 | - | | 7.0824 | 15050 | 0.0001 | - | | 7.1059 | 15100 | 0.0055 | - | | 7.1294 | 15150 | 0.0208 | - | | 7.1529 | 15200 | 0.0 | - | | 7.1765 | 15250 | 0.0 | - | | 7.2 | 15300 | 0.0134 | - | | 7.2235 | 15350 | 0.0 | - | | 7.2471 | 15400 | 0.0222 | - | | 7.2706 | 15450 | 0.0 | - | | 7.2941 | 15500 | 0.0001 | - | | 7.3176 | 15550 | 0.0 | - | | 7.3412 | 15600 | 0.0111 | - | | 7.3647 | 15650 | 0.0 | - | | 7.3882 | 15700 | 0.0025 | - | | 7.4118 | 15750 | 0.0 | - | | 7.4353 | 15800 | 0.0 | - | | 7.4588 | 15850 | 0.0 | - | | 7.4824 | 15900 | 0.0 | - | | 7.5059 | 15950 | 0.0 | - | | 7.5294 | 16000 | 0.0 | - | | 7.5529 | 16050 | 0.0 | - | | 7.5765 | 16100 | 0.0 | - | | 7.6 | 16150 | 0.0 | - | | 7.6235 | 16200 | 0.0001 | - | | 7.6471 | 16250 | 0.0203 | - | | 7.6706 | 16300 | 0.0 | - | | 7.6941 | 16350 | 0.0 | - | | 7.7176 | 16400 | 0.0 | - | | 7.7412 | 16450 | 0.0186 | - | | 7.7647 | 16500 | 0.0 | - | | 7.7882 | 16550 | 0.0 | - | | 7.8118 | 16600 | 0.0049 | - | | 7.8353 | 16650 | 0.0 | - | | 7.8588 | 16700 | 0.0044 | - | | 7.8824 | 16750 | 0.0266 | - | | 7.9059 | 16800 | 0.015 | - | | 7.9294 | 16850 | 0.0331 | - | | 7.9529 | 16900 | 0.0 | - | | 7.9765 | 16950 | 0.0 | - | | 8.0 | 17000 | 0.0 | 0.1778 | | 8.0235 | 17050 | 0.0 | - | | 8.0471 | 17100 | 0.0 | - | | 8.0706 | 17150 | 0.0082 | - | | 8.0941 | 17200 | 0.0414 | - | | 8.1176 | 17250 | 0.0 | - | | 8.1412 | 17300 | 0.0 | - | | 8.1647 | 17350 | 0.0025 | - | | 8.1882 | 17400 | 0.0 | - | | 8.2118 | 17450 | 0.0 | - | | 8.2353 | 17500 | 0.0 | - | | 8.2588 | 17550 | 0.0 | - | | 8.2824 | 17600 | 0.0 | - | | 8.3059 | 17650 | 0.0 | - | | 8.3294 | 17700 | 0.0033 | - | | 8.3529 | 17750 | 0.0 | - | | 8.3765 | 17800 | 0.0033 | - | | 8.4 | 17850 | 0.0371 | - | | 8.4235 | 17900 | 0.0217 | - | | 8.4471 | 17950 | 0.004 | - | | 8.4706 | 18000 | 0.0 | - | | 8.4941 | 18050 | 0.0 | - | | 8.5176 | 18100 | 0.0179 | - | | 8.5412 | 18150 | 0.0 | - | | 8.5647 | 18200 | 0.0 | - | | 8.5882 | 18250 | 0.0032 | - | | 8.6118 | 18300 | 0.0 | - | | 8.6353 | 18350 | 0.0026 | - | | 8.6588 | 18400 | 0.0 | - | | 8.6824 | 18450 | 0.0387 | - | | 8.7059 | 18500 | 0.0 | - | | 8.7294 | 18550 | 0.0 | - | | 8.7529 | 18600 | 0.0204 | - | | 8.7765 | 18650 | 0.0212 | - | | 8.8 | 18700 | 0.0 | - | | 8.8235 | 18750 | 0.0065 | - | | 8.8471 | 18800 | 0.0114 | - | | 8.8706 | 18850 | 0.0 | - | | 8.8941 | 18900 | 0.0335 | - | | 8.9176 | 18950 | 0.0147 | - | | 8.9412 | 19000 | 0.0 | - | | 8.9647 | 19050 | 0.0053 | - | | 8.9882 | 19100 | 0.0 | - | | 9.0 | 19125 | - | 0.1773 | | 9.0118 | 19150 | 0.0181 | - | | 9.0353 | 19200 | 0.0 | - | | 9.0588 | 19250 | 0.0 | - | | 9.0824 | 19300 | 0.0 | - | | 9.1059 | 19350 | 0.0226 | - | | 9.1294 | 19400 | 0.0 | - | | 9.1529 | 19450 | 0.0 | - | | 9.1765 | 19500 | 0.0 | - | | 9.2 | 19550 | 0.013 | - | | 9.2235 | 19600 | 0.0036 | - | | 9.2471 | 19650 | 0.0 | - | | 9.2706 | 19700 | 0.0 | - | | 9.2941 | 19750 | 0.0 | - | | 9.3176 | 19800 | 0.0 | - | | 9.3412 | 19850 | 0.0537 | - | | 9.3647 | 19900 | 0.0 | - | | 9.3882 | 19950 | 0.0031 | - | | 9.4118 | 20000 | 0.0 | - | | 9.4353 | 20050 | 0.0 | - | | 9.4588 | 20100 | 0.0 | - | | 9.4824 | 20150 | 0.0 | - | | 9.5059 | 20200 | 0.0 | - | | 9.5294 | 20250 | 0.0 | - | | 9.5529 | 20300 | 0.0033 | - | | 9.5765 | 20350 | 0.0 | - | | 9.6 | 20400 | 0.0 | - | | 9.6235 | 20450 | 0.0 | - | | 9.6471 | 20500 | 0.0 | - | | 9.6706 | 20550 | 0.0035 | - | | 9.6941 | 20600 | 0.0 | - | | 9.7176 | 20650 | 0.0036 | - | | 9.7412 | 20700 | 0.0035 | - | | 9.7647 | 20750 | 0.0 | - | | 9.7882 | 20800 | 0.0 | - | | 9.8118 | 20850 | 0.0 | - | | 9.8353 | 20900 | 0.0 | - | | 9.8588 | 20950 | 0.0 | - | | 9.8824 | 21000 | 0.0036 | - | | 9.9059 | 21050 | 0.0127 | - | | 9.9294 | 21100 | 0.0364 | - | | 9.9529 | 21150 | 0.0 | - | | 9.9765 | 21200 | 0.0 | - | | 10.0 | 21250 | 0.0 | 0.1803 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.1.0 - Transformers: 4.39.0 - PyTorch: 2.4.0+cu121 - Datasets: 3.0.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```