--- library_name: transformers license: other base_model: nvidia/Minitron-8B-Base tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: minitron-8b-tulu-v2-mix results: [] --- # minitron-8b-tulu-v2-mix This model is a fine-tuned version of [nvidia/Minitron-8B-Base](https://huggingface.co/nvidia/Minitron-8B-Base) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.6678 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8625 | 0.9992 | 566 | 0.7793 | | 0.724 | 1.9992 | 1132 | 0.6678 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.19.1