Update README.md
Browse files
README.md
CHANGED
@@ -75,27 +75,9 @@ The figure below shows results from knowledge recall evaluation experiments of B
|
|
75 |
|
76 |
### Retrieval Augmented Generation (RAG)
|
77 |
|
78 |
-
|
79 |
-
import chromadb
|
80 |
-
from llama_index import VectorStoreIndex, SimpleDirectoryReader
|
81 |
-
from chromadb.config import Settings
|
82 |
-
from llama_index.vector_stores import ChromaVectorStore
|
83 |
-
from llama_index.storage.storage_context import StorageContext
|
84 |
|
85 |
-
|
86 |
-
coll_path='./Bioinspired_Chroma' ## PATH TO CHROMA DATABASE
|
87 |
-
|
88 |
-
client = chromadb.PersistentClient(path=coll_path)
|
89 |
-
collection = client.get_collection (name=coll_name,)
|
90 |
-
|
91 |
-
db2 = chromadb.PersistentClient(path=coll_path)
|
92 |
-
chroma_collection = db2.get_or_create_collection(coll_name)
|
93 |
-
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
94 |
-
|
95 |
-
chroma_collection.count()
|
96 |
-
```
|
97 |
-
|
98 |
-
Set up BioinspiredLMM as custom LLM:
|
99 |
|
100 |
|
101 |
```
|
@@ -124,6 +106,29 @@ llm_custom = HuggingFaceLLM(context_window=2048,
|
|
124 |
tokenizer=tokenizer)
|
125 |
llm_custom.model_name='BioinspiredLLM'
|
126 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
Set up custom LLM service context and vector store indedx:
|
128 |
```
|
129 |
from llama_index.llms import LlamaCPP
|
@@ -134,12 +139,12 @@ from llama_index.llms.llama_utils import (
|
|
134 |
)
|
135 |
|
136 |
service_context = ServiceContext.from_defaults(
|
137 |
-
|
138 |
chunk_size=1024,
|
139 |
embed_model="local:BAAI/bge-large-en"
|
140 |
)
|
141 |
index = VectorStoreIndex.from_vector_store(
|
142 |
-
|
143 |
service_context=service_context,
|
144 |
)
|
145 |
```
|
@@ -158,3 +163,33 @@ question = "Which horn does not have tubules? A) big horn sheep B) pronghorn C)
|
|
158 |
response = query_engine.query(question)
|
159 |
display(Markdown(f"<b>{response}</b>"))
|
160 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
### Retrieval Augmented Generation (RAG)
|
77 |
|
78 |
+
Example based on Llama Index.
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
First, set up BioinspiredLMM as custom LLM:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
```
|
|
|
106 |
tokenizer=tokenizer)
|
107 |
llm_custom.model_name='BioinspiredLLM'
|
108 |
```
|
109 |
+
|
110 |
+
Use Chroma database collection (for the purpose of this example it has already been created, load here):
|
111 |
+
|
112 |
+
```
|
113 |
+
import chromadb
|
114 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader
|
115 |
+
from chromadb.config import Settings
|
116 |
+
from llama_index.vector_stores import ChromaVectorStore
|
117 |
+
from llama_index.storage.storage_context import StorageContext
|
118 |
+
|
119 |
+
coll_name="Bioinspired"
|
120 |
+
coll_path='./Bioinspired_Chroma' ## PATH TO CHROMA DATABASE
|
121 |
+
|
122 |
+
client = chromadb.PersistentClient(path=coll_path)
|
123 |
+
collection = client.get_collection (name=coll_name,)
|
124 |
+
|
125 |
+
db2 = chromadb.PersistentClient(path=coll_path)
|
126 |
+
chroma_collection = db2.get_or_create_collection(coll_name)
|
127 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
128 |
+
|
129 |
+
chroma_collection.count()
|
130 |
+
```
|
131 |
+
|
132 |
Set up custom LLM service context and vector store indedx:
|
133 |
```
|
134 |
from llama_index.llms import LlamaCPP
|
|
|
139 |
)
|
140 |
|
141 |
service_context = ServiceContext.from_defaults(
|
142 |
+
llm=llm_custom,
|
143 |
chunk_size=1024,
|
144 |
embed_model="local:BAAI/bge-large-en"
|
145 |
)
|
146 |
index = VectorStoreIndex.from_vector_store(
|
147 |
+
vector_store,
|
148 |
service_context=service_context,
|
149 |
)
|
150 |
```
|
|
|
163 |
response = query_engine.query(question)
|
164 |
display(Markdown(f"<b>{response}</b>"))
|
165 |
```
|
166 |
+
|
167 |
+
Alternatively, load new documents, here with all-mpnet-base-v2 embeddings:
|
168 |
+
```
|
169 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
170 |
+
embeddings = HuggingFaceEmbeddings(
|
171 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
172 |
+
)
|
173 |
+
documents_graph = SimpleDirectoryReader(
|
174 |
+
input_files=[
|
175 |
+
"./XXXXXXXXXX/XXXXX.pdf",
|
176 |
+
]
|
177 |
+
).load_data()
|
178 |
+
index_doc = VectorStoreIndex.from_documents(documents_graph, service_context=
|
179 |
+
service_context,
|
180 |
+
show_progress=True,
|
181 |
+
embeddings=embeddings,
|
182 |
+
)
|
183 |
+
|
184 |
+
```
|
185 |
+
Query:
|
186 |
+
```
|
187 |
+
question="Which rapid prototyping techniques would be useful for creating hierarchical, bio-inspired materials?"
|
188 |
+
|
189 |
+
response = index_doc.as_query_engine(service_context=service_context,
|
190 |
+
response_mode="tree_summarize",
|
191 |
+
similarity_top_k=5,
|
192 |
+
).query(question,
|
193 |
+
)
|
194 |
+
print(response)
|
195 |
+
```
|