--- license: apache-2.0 --- ### BioinspiredZephyr-7B: Large Language Model for the Mechanics of Biological and Bio-Inspired Materials To accelerate discovery and guide insights, we report an open-source autoregressive transformer large language model (LLM), trained on expert knowledge in the biological materials field, especially focused on mechanics and structural properties. The model is finetuned with a corpus of over a thousand peer-reviewed articles in the field of structural biological and bio-inspired materials and can be prompted to recall information, assist with research tasks, and function as an engine for creativity. The model is based on HuggingFaceH4/zephyr-7b-beta. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/bsqBByauWBZ0Y8PspthR8.png) This model is based on work reported in https://doi.org/10.1002/advs.202306724. This repository includes both, Hugging Face transformers and GGUF files (in different versions, the q5_K_M is recommended). #### Hugging Face transformers files: Loading and inference ``` from transformers import AutoModelForCausalLM, AutoTokenizer from accelerate import infer_auto_device_map model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, device_map="auto", #device_map="cuda:0", torch_dtype= torch.bfloat16, # use_flash_attention_2=True, ) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` Chat template ``` messages = [ {"role": "system", "content": "You are a friendly materials scientist."}, {"role": "user", "content": "What is the strongest spider silk material?"}, {"role": "assistant", "content": "Sample response."}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) ``` '<|system|>\nYou are a friendly materials scientist.\n<|user|>\nWhat is the strongest spider silk material?\n<|assistant|>\nSample response.\n<|assistant|>\n' ``` device='cuda' def generate_response (text_input="Biological materials offer amazing possibilities, such as", num_return_sequences=1, temperature=1., max_new_tokens=127, num_beams=1, top_k = 50, top_p =0.9,repetition_penalty=1.,eos_token_id=2,verbatim=False, exponential_decay_length_penalty_fac=None, ): inputs = tokenizer.encode(text_input, add_special_tokens =False, return_tensors ='pt') if verbatim: print ("Length of input, tokenized: ", inputs.shape, inputs) with torch.no_grad(): outputs = model.generate(input_ids=inputs.to(device), max_new_tokens=max_new_tokens, temperature=temperature, #value used to modulate the next token probabilities. num_beams=num_beams, top_k = top_k, top_p =top_p, num_return_sequences = num_return_sequences, eos_token_id=eos_token_id, do_sample =True, repetition_penalty=repetition_penalty, ) return tokenizer.batch_decode(outputs[:,inputs.shape[1]:].detach().cpu().numpy(), skip_special_tokens=True) ``` Then: ``` messages = [ {"role": "system", "content": "You are a friendly materials scientist."}, {"role": "user", "content": "What is the strongest spider silk material?"}, ] prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) output_text=generate_response (text_input=prompt, eos_token_id=eos_token, num_return_sequences=1, repetition_penalty=1., top_p=0.9, top_k=512, temperature=0.1,max_new_tokens=512, verbatim=False, ) print (output_text) ``` #### GGUF files: Loading and inference ``` from llama_cpp import Llama model_path='./BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf' chat_format="mistral-instruct" llm = Llama(model_path=model_path, n_gpu_layers=-1,verbose= True, n_ctx=10000, #main_gpu=0, chat_format=chat_format, #split_mode=llama_cpp.LLAMA_SPLIT_LAYER ) ``` Or, download directly from Hugging Face: ``` from llama_cpp import Llama model_path='lamm-mit/BioinspiredZephyr-7B/ggml-model-q5_K_M.gguf' chat_format="mistral-instruct" llm = Llama.from_pretrained( repo_id=model_path, filename="*q5_K_M.gguf", verbose=True, n_gpu_layers=-1, n_ctx=10000, #main_gpu=0, chat_format=chat_format, ) ``` For inference: ``` def generate_BioinspiredZephyr_7B(system_prompt='You are an expert in biological materials, mechanics and related topics.', prompt="What is spider silk?", temperature=0.0, max_tokens=10000, ): if system_prompt==None: messages=[ {"role": "user", "content": prompt}, ] else: messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt}, ] result=llm.create_chat_completion( messages=messages, temperature=temperature, max_tokens=max_tokens, ) start_time = time.time() result=generate_BioinspiredZephyr_7B(system_prompt='You respond accurately.', prompt="What is graphene? Answer with detail.", max_tokens=512, temperature=0.7, ) print (result) deltat=time.time() - start_time print("--- %s seconds ---" % deltat) toked=tokenizer(res) print ("Tokens per second (generation): ", len (toked['input_ids'])/deltat) ```