File size: 6,704 Bytes
28c51d1
d0da105
28c51d1
400e922
d0da105
 
 
 
 
 
 
 
 
 
 
 
 
 
86236c3
919df1f
 
 
a0a3fe8
919df1f
 
 
86236c3
 
d0da105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21eb7de
ded826f
 
 
 
 
d0da105
21eb7de
 
569d3a4
ded826f
d0da105
21eb7de
d0da105
 
ded826f
d0da105
ded826f
d0da105
 
 
 
 
 
569d3a4
d0da105
 
 
 
 
 
 
569d3a4
 
d0da105
 
 
 
71cd523
 
1391929
71cd523
400e922
 
1391929
400e922
d0da105
 
 
 
2759b9a
400e922
d0da105
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---
license: apache-2.0
---
# X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Framework for Large Language Models 

X-LoRA works by learning scaling values for LoRA adapters. These learned scalings values are used to
gate the LoRA experts in a dense fashion. Additionally, all LoRA adapters and the base model are frozen, allowing efficient fine tuning due to a low parameter count.

X-LoRA is easily applied to any HuggingFace Transformers model.

## Features
- Effective: Dense gating of experts allows effective mixing
- Efficient fine-tuning: low trainable parameter count
- Hierarchical encapsulated strategy: Re-use existing trained models or model section and re-use them to address complex tasks that cut across experts, following a bio-inspired strategy 
- Easy-to-use API: `add_xlora_to_model`, broad compatibility 
- Dynamically mix LoRA adapters: Deep layer-wise combinations of adapters.

## X-LoRA source code

Install directly from source

```
pip install git+https://github.com/EricLBuehler/xlora.git -U
```

Further details on installation, packages with source code, API details and more examples:

[https://github.com/EricLBuehler/xlora](https://github.com/EricLBuehler/xlora)

## Converting and loading a model

Example for model conversation:

```python
import torch
import xlora
from transformers import AutoConfig, AutoModelForCausalLM # type: ignore

model = AutoModelForCausalLM.from_pretrained(
    "mistralai/Mistral-7B-Instruct-v0.1",
    trust_remote_code=True,
    use_flash_attention_2=False,
    device_map="cuda:0",
    torch_dtype=torch.bfloat16,
)

config = AutoConfig.from_pretrained(
    "mistralai/Mistral-7B-Instruct-v0.1",
    trust_remote_code=True,
    use_flash_attention_2=False,
    device_map="auto",
)

### Convert the model to X-LoRA
model_created = xlora.add_xlora_to_model(
    model=model,
    xlora_config=xlora.xLoRAConfig(config.hidden_size, xlora_depth=8, device=torch.device("cuda")),
    verbose=True,
    adapters={
        "adapter_1": "./path/to/the/checkpoint_adapter_1/",
        "adapter_2": "./path/to/the/checkpoint_adapter_2/",
        "adapter_n": "./path/to/the/checkpoint_adapter_3/",
    },
)
```

## Loading a trained X-LoRA model from scratch
```python
import torch
import xlora
from transformers import AutoConfig, AutoModelForCausalLM # type: ignore

model = AutoModelForCausalLM.from_pretrained(
    "mistralai/Mistral-7B-Instruct-v0.1",
    trust_remote_code=True,
    use_flash_attention_2=False,
    device_map="cuda:0",
    torch_dtype=torch.bfloat16,
)

config = AutoConfig.from_pretrained(
    "mistralai/Mistral-7B-Instruct-v0.1",
    trust_remote_code=True,
    use_flash_attention_2=False,
    device_map="auto",
)

model = xlora.from_pretrained(
    "./path/to/saved/model",
    model,
    {
        "adapter_1": "./path/to/the/checkpoint/",
        "adapter_2": "./path/to/the/checkpoint/",
        "adapter_n": "./path/to/the/checkpoint/",
    },
    "cuda",
)
```
## Loading pre-trained X-LoRA model

```python
import torch
from xlora.xlora_utils import load_model  # type: ignore

XLoRA_model_name = "lamm-mit/x-lora/X-LoRA"

model, tokenizer = load_model(
    model_name="HuggingFaceH4/zephyr-7b-beta",
    device="cuda:0",
    dtype=torch.bfloat16,
    fine_tune_model_name=XLoRA_model_name,
    adapters={
        "adapter_1": "lamm-mit/x-lora/X-LoRA_adapters/1/",
        "adapter_2": "lamm-mit/x-lora/X-LoRA_adapters/2/",
        "adapter_3": "lamm-mit/x-lora/X-LoRA_adapters/3/",
        "adapter_4": "lamm-mit/x-lora/X-LoRA_adapters/4/",
        "adapter_5": "lamm-mit/x-lora/X-LoRA_adapters/5/",
        "adapter_6": "lamm-mit/x-lora/X-LoRA_adapters/6/",
        "adapter_7": "lamm-mit/x-lora/X-LoRA_adapters/7/",
        "adapter_8": "lamm-mit/x-lora/X-LoRA_adapters/8/",
        "adapter_9": "lamm-mit/x-lora/X-LoRA_adapters/9/",
    },
)
```
Inference:
```python
def generate_response (model, tokenizer, 
                      text_input="What is the best biomaterial for superior strength?",
                      num_return_sequences = 1,
                      temperature = 0.75,  
                      max_new_tokens = 127,
                      num_beams = 1,
                      top_k = 50,
                      top_p = 0.9,
                      repetition_penalty=1.,
                      eos_token_id=2, 
                      add_special_tokens=True,  
                      ):
    inputs = tokenizer(text_input,  add_special_tokens=add_special_tokens)
    with torch.no_grad():
          outputs = model.generate(input_ids = inputs["input_ids"],
                                    attention_mask = inputs["attention_mask"] ,  
                                    max_new_tokens=max_new_tokens,
                                    temperature=temperature, 
                                    num_beams=num_beams,
                                    top_k = top_k,
                                    top_p = top_p,
                                    num_return_sequences = num_return_sequences,
                                    eos_token_id=eos_token_id,
                                    pad_token_id = eos_token_id,
                                    do_sample =True, 
                                    repetition_penalty=repetition_penalty,
                                  )
    return tokenizer.batch_decode(outputs[:,inputs["input_ids"].shape[1]:].detach().cpu().numpy(), skip_special_tokens=True)

output_text=generate_response (model, tokenizer, text_input=txt,eos_token_id=eos_token,
                                           num_return_sequences=1, repetition_penalty=1.1,
                                           top_p=0.9, top_k=512, 
                                           temperature=0.5,
                                           max_new_tokens=256)

print (output_text[0])
```

## Dataset

See [lamm-mit/x-lora-dataset](https://huggingface.co/datasets/lamm-mit/x-lora-dataset) for the dataset used to train the X-LoRA model. Details on the datasets used to train the original adapters are included in the paper (see reference below).

## Acknowledgements

This work is built on the Hugging Face [PEFT library](https://github.com/huggingface/peft/tree/main/src/peft) and other components in the Hugging Face ecosystem.

## Original paper and citation

Cite this work as:
```bibtex
@article{Buehler_XLoRA_2024,
    title   = {X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Framework for Large Language Models with Applications in Protein Mechanics and Design},
    author  = {E.L. Buehler, M.J. Buehler},
    journal = {},
    year    = {2024},
    volume  = {},
    pages   = {},
    url     = {https://arxiv.org/abs/XXXX.YYYYY}
}
```