--- license: apache-2.0 --- # X-LoRA Mixture of LoRA Experts: Leverage the power of fine-tuned LoRA experts by employing a mixture of experts, or MoE technique. X-LoRA works by learning scaling values for LoRA adapters. These learned scalings values are used to gate the LoRA experts in a dense fashion. Additionally, all LoRA adapters and the base model are frozen, allowing efficient fine tuning due to a low parameter count. X-LoRA is easily applied to any HuggingFace Transformers model. ## Features - Effective: Dense gating of experts allows effective mixing - Efficient fine-tuning: low trainable parameter count - Hierarchical encapsulated strategy: Re-use existing trained models or model section and re-use them to address complex tasks that cut across experts, following a bio-inspired strategy - Easy-to-use API: `add_xlora_to_model`, broad compatibility - Dynamically mix LoRA adapters: Deep layer-wise combinations of adapters. ## X-LoRA source code ``` https://github.com/EricLBuehler/xlora ``` ## Converting and loading a model Example for model conversation: ```python import torch import xlora from transformers import AutoConfig, AutoModelForCausalLM # type: ignore model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1", trust_remote_code=True, use_flash_attention_2=False, device_map="cuda:0", torch_dtype=torch.bfloat16, ) config = AutoConfig.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1", trust_remote_code=True, use_flash_attention_2=False, device_map="auto", ) ### Convert the model to X-LoRA model_created = xlora.add_xlora_to_model( model=model, xlora_config=xlora.xLoRAConfig(config.hidden_size, xlora_depth=8, device=torch.device("cuda")), verbose=True, adapters={ "adapter_1": "./path/to/the/checkpoint_adapter_1/", "adapter_2": "./path/to/the/checkpoint_adapter_2/", "adapter_n": "./path/to/the/checkpoint_adapter_3/", }, ) ``` ## Loading a trained X-LoRA model from scratch ```python import torch import xlora from transformers import AutoConfig, AutoModelForCausalLM # type: ignore model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1", trust_remote_code=True, use_flash_attention_2=False, device_map="cuda:0", torch_dtype=torch.bfloat16, ) config = AutoConfig.from_pretrained( "mistralai/Mistral-7B-Instruct-v0.1", trust_remote_code=True, use_flash_attention_2=False, device_map="auto", ) model = xlora.from_pretrained( "./path/to/saved/model", model, { "adapter_1": "./path/to/the/checkpoint/", "adapter_2": "./path/to/the/checkpoint/", "adapter_n": "./path/to/the/checkpoint/", }, "cuda", ) ``` ## Loading pre-trained X-LoRA model ```python import torch from xlora.xlora_utils import load_model # type: ignore XLoRA_model_name = "lamm-mit/x-lora/X-LoRA" model, tokenizer = load_model( model_name="HuggingFaceH4/zephyr-7b-beta", device="cuda:0", dtype=torch.bfloat16, fine_tune_model_name=XLoRA_model_name, adapters={ "adapter_1": "lamm-mit/x-lora/X-LoRA_adapters/1/", "adapter_2": "lamm-mit/x-lora/X-LoRA_adapters/2/", "adapter_3": "lamm-mit/x-lora/X-LoRA_adapters/3/", "adapter_4": "lamm-mit/x-lora/X-LoRA_adapters/4/", "adapter_5": "lamm-mit/x-lora/X-LoRA_adapters/5/", "adapter_6": "lamm-mit/x-lora/X-LoRA_adapters/6/", "adapter_7": "lamm-mit/x-lora/X-LoRA_adapters/7/", "adapter_8": "lamm-mit/x-lora/X-LoRA_adapters/8/", "adapter_9": "lamm-mit/x-lora/X-LoRA_adapters/9/", }, ) ``` Inference: ```python def generate_response (model,tokenizer,text_input="What is the best biomaterial for superior strength?", num_return_sequences=1, temperature=1., #the higher the temperature, the more creative the model becomes max_new_tokens=127, num_beams=1, top_k = 50, top_p =0.9,repetition_penalty=1.,eos_token_id=2,verbatim=False, exponential_decay_length_penalty_fac=None,add_special_tokens=True, ): inputs = tokenizer(text_input, with torch.no_grad(): outputs = model.generate(input_ids = inputs["input_ids"], attention_mask = inputs["attention_mask"] , # This is usually done automatically by the tokenizer max_new_tokens=max_new_tokens, temperature=temperature, #value used to modulate the next token probabilities. num_beams=num_beams, top_k = top_k, top_p = top_p, num_return_sequences = num_return_sequences, eos_token_id=eos_token_id, pad_token_id = eos_token_id, do_sample =True,#skip_prompt=True, repetition_penalty=repetition_penalty, ) return tokenizer.batch_decode(outputs[:,inputs["input_ids"].shape[1]:].detach().cpu().numpy(), skip_special_tokens=True) output_text=generate_response (model, tokenizer, text_input=txt,eos_token_id=eos_token, num_return_sequences=1, repetition_penalty=1.1, top_p=0.9, top_k=512, temperature=0.5,max_new_tokens=256) print (output_text[0]) ``` ## Original paper and citation Cite this work as: ```bibtex @article{NiBuehler_2024, title = {X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Mixture-of-Experts Framework for Large Language Models with Applications in Protein Mechanics and Design}, author = {E.L. Buehler, M.J. Buehler}, journal = {}, year = {2024}, volume = {}, pages = {}, url = {https://arxiv.org/abs/XXXX.YYYYY} } ```