Text-to-Image
Diffusers
lora
File size: 2,783 Bytes
76b45c8
b7cca8c
 
8e2a773
 
b7cca8c
 
e4f4bc8
76b45c8
 
b7cca8c
 
180e2dc
b7cca8c
 
b4aec14
b7cca8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e2a773
b7cca8c
 
 
 
76b45c8
b7cca8c
8e2a773
b7cca8c
76b45c8
8e2a773
b7cca8c
8e2a773
76b45c8
 
b7cca8c
 
 
 
 
 
3da89c9
8698e97
b7cca8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76b45c8
b4aec14
 
 
 
b7cca8c
76b45c8
b7cca8c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
library_name: diffusers
base_model: stabilityai/stable-diffusion-xl-base-1.0
tags:
- lora
- text-to-image
license: openrail++
inference: false
---

# Latent Consistency Model (LCM) LoRA: SDXL

Latent Consistency Model (LCM) LoRA was proposed in [LCM-LoRA: A universal Stable-Diffusion Acceleration Module](https://arxiv.org/abs/2311.05556) 
by *Simian Luo, Yiqin Tan, Suraj Patil, Daniel Gu et al.*

It is a distilled consistency adapter for [`stable-diffusion-xl-base-1.0`](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) that allows
to reduce the number of inference steps to only between **2 - 8 steps**.

| Model                                                                      | Params / M | 
|----------------------------------------------------------------------------|------------|
| [lcm-lora-sdv1-5](https://huggingface.co/latent-consistency/lcm-lora-sdv1-5)   | 67.5        |
| [lcm-lora-ssd-1b](https://huggingface.co/latent-consistency/lcm-lora-ssd-1b)   | 105        |
| [**lcm-lora-sdxl**](https://huggingface.co/latent-consistency/lcm-lora-sdxl) | **197M**  |

## Usage

LCM-LoRA is supported in 🤗 Hugging Face Diffusers library from version v0.23.0 onwards. To run the model, first 
install the latest version of the Diffusers library as well as `peft`, `accelerate` and `transformers`.
audio dataset from the Hugging Face Hub:

```bash
pip install --upgrade pip
pip install --upgrade diffusers transformers accelerate peft
```

### Text-to-Image

The adapter can be loaded with it's base model `stabilityai/stable-diffusion-xl-base-1.0`. Next, the scheduler needs to be changed to [`LCMScheduler`](https://huggingface.co/docs/diffusers/v0.22.3/en/api/schedulers/lcm#diffusers.LCMScheduler) and we can reduce the number of inference steps to just 2 to 8 steps.
Please make sure to either disable `guidance_scale` or use values between 1.0 and 2.0.

```python
import torch
from diffusers import LCMScheduler, AutoPipelineForText2Image

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
adapter_id = "latent-consistency/lcm-lora-sdxl"

pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")

# load and fuse lcm lora
pipe.load_lora_weights(adapter_id)
pipe.fuse_lora()


prompt = "Self-portrait oil painting, a beautiful cyborg with golden hair, 8k"

# disable guidance_scale by passing 0
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
```

![](./image.png)

### Image-to-Image

Works as well! TODO docs

### Inpainting

Works as well! TODO docs

### ControlNet

Works as well! TODO docs

### T2I Adapter

Works as well! TODO docs

## Speed Benchmark

TODO

## Training

TODO