ledmands
commited on
Commit
·
650f88b
1
Parent(s):
08b1231
Added dqn_pacmanv5_run2.ipynb
Browse files
notebooks/dqn_pacmanv5_run2.ipynb
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"%%capture\n",
|
10 |
+
"!pip install stable-baselines3[extra]\n",
|
11 |
+
"!pip install moviepy"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": null,
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"from stable_baselines3 import DQN\n",
|
21 |
+
"from stable_baselines3.common.monitor import Monitor\n",
|
22 |
+
"from stable_baselines3.common.callbacks import BaseCallback, EvalCallback, CallbackList\n",
|
23 |
+
"from stable_baselines3.common.logger import Video, HParam, TensorBoardOutputFormat\n",
|
24 |
+
"from stable_baselines3.common.evaluation import evaluate_policy\n",
|
25 |
+
"\n",
|
26 |
+
"from typing import Any, Dict\n",
|
27 |
+
"\n",
|
28 |
+
"import gymnasium as gym\n",
|
29 |
+
"import torch as th\n",
|
30 |
+
"import numpy as np\n",
|
31 |
+
"\n",
|
32 |
+
"# =====File names=====\n",
|
33 |
+
"MODEL_FILE_NAME = \"ALE-Pacman-v5\"\n",
|
34 |
+
"BUFFER_FILE_NAME = \"dqn_replay_buffer_pacman_v1\"\n",
|
35 |
+
"POLICY_FILE_NAME = \"dqn_policy_pacman_v1\"\n",
|
36 |
+
"\n",
|
37 |
+
"# =====Model Config=====\n",
|
38 |
+
"# Evaluate in tenths\n",
|
39 |
+
"EVAL_CALLBACK_FREQ = 150_000\n",
|
40 |
+
"# Record in quarters (the last one won't record, will have to do manually)\n",
|
41 |
+
"VIDEO_CALLBACK_FREQ = 375_000\n",
|
42 |
+
"FRAMESKIP = 4\n",
|
43 |
+
"NUM_TIMESTEPS = 1_500_000\n",
|
44 |
+
"\n",
|
45 |
+
"# =====Hyperparams=====\n",
|
46 |
+
"EXPLORATION_FRACTION = 0.3\n",
|
47 |
+
"# Buffer size needs to be less than about 60k in order to save it in a Kaggle instance\n",
|
48 |
+
"BUFFER_SIZE = 60_000\n",
|
49 |
+
"BATCH_SIZE = 64\n",
|
50 |
+
"LEARNING_STARTS = 50_000\n",
|
51 |
+
"LEARNING_RATE = 0.0002\n",
|
52 |
+
"GAMMA = 0.999\n",
|
53 |
+
"FINAL_EPSILON = 0.1\n",
|
54 |
+
"# Target Update Interval is set to 10k by default and looks like it is set to \n",
|
55 |
+
"# 4 in the Nature paper. This is a large discrepency and makes me wonder if it \n",
|
56 |
+
"# is something different or measured differently...\n",
|
57 |
+
"TARGET_UPDATE_INTERVAL = 1_000"
|
58 |
+
]
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"execution_count": null,
|
63 |
+
"metadata": {},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"# VideoRecorderCallback\n",
|
67 |
+
"# The VideoRecorderCallback should record a video of the agent in the evaluation environment\n",
|
68 |
+
"# every render_freq timesteps. It will record one episode. It will also record one episode when\n",
|
69 |
+
"# the training has been completed\n",
|
70 |
+
"\n",
|
71 |
+
"class VideoRecorderCallback(BaseCallback):\n",
|
72 |
+
" def __init__(self, eval_env: gym.Env, render_freq: int, n_eval_episodes: int = 1, deterministic: bool = True):\n",
|
73 |
+
" \"\"\"\n",
|
74 |
+
" Records a video of an agent's trajectory traversing ``eval_env`` and logs it to TensorBoard.\n",
|
75 |
+
" :param eval_env: A gym environment from which the trajectory is recorded\n",
|
76 |
+
" :param render_freq: Render the agent's trajectory every eval_freq call of the callback.\n",
|
77 |
+
" :param n_eval_episodes: Number of episodes to render\n",
|
78 |
+
" :param deterministic: Whether to use deterministic or stochastic policy\n",
|
79 |
+
" \"\"\"\n",
|
80 |
+
" super().__init__()\n",
|
81 |
+
" self._eval_env = eval_env\n",
|
82 |
+
" self._render_freq = render_freq\n",
|
83 |
+
" self._n_eval_episodes = n_eval_episodes\n",
|
84 |
+
" self._deterministic = deterministic\n",
|
85 |
+
"\n",
|
86 |
+
" def _on_step(self) -> bool:\n",
|
87 |
+
" if self.n_calls % self._render_freq == 0:\n",
|
88 |
+
" screens = []\n",
|
89 |
+
"\n",
|
90 |
+
" def grab_screens(_locals: Dict[str, Any], _globals: Dict[str, Any]) -> None:\n",
|
91 |
+
" \"\"\"\n",
|
92 |
+
" Renders the environment in its current state, recording the screen in the captured `screens` list\n",
|
93 |
+
" :param _locals: A dictionary containing all local variables of the callback's scope\n",
|
94 |
+
" :param _globals: A dictionary containing all global variables of the callback's scope\n",
|
95 |
+
" \"\"\"\n",
|
96 |
+
" screen = self._eval_env.render()\n",
|
97 |
+
" # PyTorch uses CxHxW vs HxWxC gym (and tensorflow) image convention\n",
|
98 |
+
" screens.append(screen.transpose(2, 0, 1))\n",
|
99 |
+
"\n",
|
100 |
+
" evaluate_policy(\n",
|
101 |
+
" self.model,\n",
|
102 |
+
" self._eval_env,\n",
|
103 |
+
" callback=grab_screens,\n",
|
104 |
+
" n_eval_episodes=self._n_eval_episodes,\n",
|
105 |
+
" deterministic=self._deterministic,\n",
|
106 |
+
" )\n",
|
107 |
+
" self.logger.record(\n",
|
108 |
+
" \"trajectory/video\",\n",
|
109 |
+
" Video(th.from_numpy(np.array([screens])), fps=60),\n",
|
110 |
+
" exclude=(\"stdout\", \"log\", \"json\", \"csv\"),\n",
|
111 |
+
" )\n",
|
112 |
+
" return True"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [],
|
120 |
+
"source": [
|
121 |
+
"# HParamCallback\n",
|
122 |
+
"# This should log the hyperparameters specified and map the metrics that are logged to \n",
|
123 |
+
"# the appropriate run.\n",
|
124 |
+
"class HParamCallback(BaseCallback):\n",
|
125 |
+
" \"\"\"\n",
|
126 |
+
" Saves the hyperparameters and metrics at the start of the training, and logs them to TensorBoard.\n",
|
127 |
+
" \"\"\" \n",
|
128 |
+
" def __init__(self):\n",
|
129 |
+
" super().__init__()\n",
|
130 |
+
" \n",
|
131 |
+
"\n",
|
132 |
+
" def _on_training_start(self) -> None:\n",
|
133 |
+
" \n",
|
134 |
+
" hparam_dict = {\n",
|
135 |
+
" \"algorithm\": self.model.__class__.__name__,\n",
|
136 |
+
" \"policy\": self.model.policy.__class__.__name__,\n",
|
137 |
+
" \"environment\": self.model.env.__class__.__name__,\n",
|
138 |
+
" \"buffer_size\": self.model.buffer_size,\n",
|
139 |
+
" \"batch_size\": self.model.batch_size,\n",
|
140 |
+
" \"tau\": self.model.tau,\n",
|
141 |
+
" \"gradient_steps\": self.model.gradient_steps,\n",
|
142 |
+
" \"target_update_interval\": self.model.target_update_interval,\n",
|
143 |
+
" \"exploration_fraction\": self.model.exploration_fraction,\n",
|
144 |
+
" \"exploration_initial_eps\": self.model.exploration_initial_eps,\n",
|
145 |
+
" \"exploration_final_eps\": self.model.exploration_final_eps,\n",
|
146 |
+
" \"max_grad_norm\": self.model.max_grad_norm,\n",
|
147 |
+
" \"tensorboard_log\": self.model.tensorboard_log,\n",
|
148 |
+
" \"seed\": self.model.seed, \n",
|
149 |
+
" \"learning rate\": self.model.learning_rate,\n",
|
150 |
+
" \"gamma\": self.model.gamma, \n",
|
151 |
+
" }\n",
|
152 |
+
" # define the metrics that will appear in the `HPARAMS` Tensorboard tab by referencing their tag\n",
|
153 |
+
" # Tensorbaord will find & display metrics from the `SCALARS` tab\n",
|
154 |
+
" metric_dict = {\n",
|
155 |
+
" \"eval/mean_ep_length\": 0,\n",
|
156 |
+
" \"eval/mean_reward\": 0,\n",
|
157 |
+
" \"rollout/ep_len_mean\": 0,\n",
|
158 |
+
" \"rollout/ep_rew_mean\": 0,\n",
|
159 |
+
" \"rollout/exploration_rate\": 0,\n",
|
160 |
+
" \"time/_episode_num\": 0,\n",
|
161 |
+
" \"time/fps\": 0,\n",
|
162 |
+
" \"time/total_timesteps\": 0,\n",
|
163 |
+
" \"train/learning_rate\": 0.0,\n",
|
164 |
+
" \"train/loss\": 0.0,\n",
|
165 |
+
" \"train/n_updates\": 0.0,\n",
|
166 |
+
" \"locals/rewards\": 0.0,\n",
|
167 |
+
" \"locals/infos_0_lives\": 0.0,\n",
|
168 |
+
" \"locals/num_collected_steps\": 0.0,\n",
|
169 |
+
" \"locals/num_collected_episodes\": 0.0\n",
|
170 |
+
" }\n",
|
171 |
+
" \n",
|
172 |
+
" self.logger.record(\n",
|
173 |
+
" \"hparams\",\n",
|
174 |
+
" HParam(hparam_dict, metric_dict),\n",
|
175 |
+
" exclude=(\"stdout\", \"log\", \"json\", \"csv\"),\n",
|
176 |
+
" )"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": null,
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"# PlotTensorboardValuesCallback\n",
|
186 |
+
"# This callback should log values to tensorboard on every step. \n",
|
187 |
+
"# The self.logger class should plot a new scalar value when recording.\n",
|
188 |
+
"\n",
|
189 |
+
"class PlotTensorboardValuesCallback(BaseCallback):\n",
|
190 |
+
" \"\"\"\n",
|
191 |
+
" Custom callback for plotting additional values in tensorboard.\n",
|
192 |
+
" \"\"\"\n",
|
193 |
+
" def __init__(self, eval_env: gym.Env, train_env: gym.Env, model: DQN, verbose=0):\n",
|
194 |
+
" super().__init__(verbose)\n",
|
195 |
+
" self._eval_env = eval_env\n",
|
196 |
+
" self._train_env = train_env\n",
|
197 |
+
" self._model = model\n",
|
198 |
+
"\n",
|
199 |
+
" def _on_training_start(self) -> None:\n",
|
200 |
+
" output_formats = self.logger.output_formats\n",
|
201 |
+
" # Save reference to tensorboard formatter object\n",
|
202 |
+
" # note: the failure case (not formatter found) is not handled here, should be done with try/except.\n",
|
203 |
+
" try:\n",
|
204 |
+
" self.tb_formatter = next(formatter for formatter in output_formats if isinstance(formatter, TensorBoardOutputFormat))\n",
|
205 |
+
" except:\n",
|
206 |
+
" print(\"Exception thrown in tb_formatter initialization.\") \n",
|
207 |
+
" \n",
|
208 |
+
" self.tb_formatter.writer.add_text(\"metadata/eval_env\", str(self._eval_env.metadata), self.num_timesteps)\n",
|
209 |
+
" self.tb_formatter.writer.flush()\n",
|
210 |
+
" self.tb_formatter.writer.add_text(\"metadata/train_env\", str(self._train_env.metadata), self.num_timesteps)\n",
|
211 |
+
" self.tb_formatter.writer.flush()\n",
|
212 |
+
" self.tb_formatter.writer.add_text(\"model/q_net\", str(self._model.q_net), self.num_timesteps)\n",
|
213 |
+
" self.tb_formatter.writer.flush()\n",
|
214 |
+
" self.tb_formatter.writer.add_text(\"model/q_net_target\", str(self._model.q_net_target), self.num_timesteps)\n",
|
215 |
+
" self.tb_formatter.writer.flush()\n",
|
216 |
+
"\n",
|
217 |
+
" def _on_step(self) -> bool:\n",
|
218 |
+
" self.logger.record(\"time/_episode_num\", self.model._episode_num, exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
|
219 |
+
" self.logger.record(\"train/n_updates\", self.model._n_updates, exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
|
220 |
+
" self.logger.record(\"locals/rewards\", self.locals[\"rewards\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
|
221 |
+
" self.logger.record(\"locals/infos_0_lives\", self.locals[\"infos\"][0][\"lives\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
|
222 |
+
" self.logger.record(\"locals/num_collected_steps\", self.locals[\"num_collected_steps\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
|
223 |
+
" self.logger.record(\"locals/num_collected_episodes\", self.locals[\"num_collected_episodes\"], exclude=(\"stdout\", \"log\", \"json\", \"csv\"))\n",
|
224 |
+
" \n",
|
225 |
+
" return True\n",
|
226 |
+
" \n",
|
227 |
+
" def _on_training_end(self) -> None:\n",
|
228 |
+
" self.tb_formatter.writer.add_text(\"metadata/eval_env\", str(self._eval_env.metadata), self.num_timesteps)\n",
|
229 |
+
" self.tb_formatter.writer.flush()\n",
|
230 |
+
" self.tb_formatter.writer.add_text(\"metadata/train_env\", str(self._train_env.metadata), self.num_timesteps)\n",
|
231 |
+
" self.tb_formatter.writer.flush()\n",
|
232 |
+
" self.tb_formatter.writer.add_text(\"model/q_net\", str(self._model.q_net), self.num_timesteps)\n",
|
233 |
+
" self.tb_formatter.writer.flush()\n",
|
234 |
+
" self.tb_formatter.writer.add_text(\"model/q_net_target\", str(self._model.q_net_target), self.num_timesteps)\n",
|
235 |
+
" self.tb_formatter.writer.flush()"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "code",
|
240 |
+
"execution_count": null,
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"# make the training and evaluation environments\n",
|
245 |
+
"eval_env = Monitor(gym.make(\"ALE/Pacman-v5\", render_mode=\"rgb_array\", frameskip=FRAMESKIP))\n",
|
246 |
+
"train_env = gym.make(\"ALE/Pacman-v5\", render_mode=\"rgb_array\", frameskip=FRAMESKIP)\n",
|
247 |
+
"\n",
|
248 |
+
"# Make the model with specified hyperparams\n",
|
249 |
+
"model = DQN(\n",
|
250 |
+
" \"CnnPolicy\",\n",
|
251 |
+
" train_env,\n",
|
252 |
+
" verbose=1,\n",
|
253 |
+
" buffer_size=BUFFER_SIZE,\n",
|
254 |
+
" exploration_fraction = EXPLORATION_FRACTION,\n",
|
255 |
+
" batch_size=BATCH_SIZE,\n",
|
256 |
+
" exploration_final_eps=FINAL_EPSILON,\n",
|
257 |
+
" gamma=GAMMA,\n",
|
258 |
+
" learning_starts=LEARNING_STARTS,\n",
|
259 |
+
" learning_rate=LEARNING_RATE,\n",
|
260 |
+
" target_update_interval=TARGET_UPDATE_INTERVAL,\n",
|
261 |
+
" tensorboard_log=\"./\",\n",
|
262 |
+
" )"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": [
|
271 |
+
"# Define the callbacks and put them in a list\n",
|
272 |
+
"eval_callback = EvalCallback(\n",
|
273 |
+
" eval_env,\n",
|
274 |
+
" best_model_save_path=\"./best_model/\",\n",
|
275 |
+
" log_path=\"./evals/\",\n",
|
276 |
+
" eval_freq=EVAL_CALLBACK_FREQ,\n",
|
277 |
+
" n_eval_episodes=10,\n",
|
278 |
+
" deterministic=True,\n",
|
279 |
+
" render=False)\n",
|
280 |
+
"\n",
|
281 |
+
"tbplot_callback = PlotTensorboardValuesCallback(eval_env=eval_env, train_env=train_env, model=model)\n",
|
282 |
+
"video_callback = VideoRecorderCallback(eval_env, render_freq=VIDEO_CALLBACK_FREQ)\n",
|
283 |
+
"hparam_callback = HParamCallback()\n",
|
284 |
+
"\n",
|
285 |
+
"callback_list = CallbackList([hparam_callback, eval_callback, video_callback, tbplot_callback])"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "code",
|
290 |
+
"execution_count": null,
|
291 |
+
"metadata": {},
|
292 |
+
"outputs": [],
|
293 |
+
"source": [
|
294 |
+
"# Train the model\n",
|
295 |
+
"model.learn(total_timesteps=NUM_TIMESTEPS, callback=callback_list, tb_log_name=\"./tb/\")"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"# Save the model, policy, and replay buffer for future loading and training\n",
|
305 |
+
"model.save(MODEL_FILE_NAME)\n",
|
306 |
+
"model.save_replay_buffer(BUFFER_FILE_NAME)\n",
|
307 |
+
"model.policy.save(POLICY_FILE_NAME)"
|
308 |
+
]
|
309 |
+
}
|
310 |
+
],
|
311 |
+
"metadata": {
|
312 |
+
"language_info": {
|
313 |
+
"name": "python"
|
314 |
+
}
|
315 |
+
},
|
316 |
+
"nbformat": 4,
|
317 |
+
"nbformat_minor": 2
|
318 |
+
}
|