ledmands
commited on
Commit
·
a2ff203
1
Parent(s):
1427095
Updated record_video.py to truncate recording upon episode end. File still saves based on steps specified, however...
Browse files- agents/record_video.py +16 -4
- agents/videos/rl-video-step-0-to-step-10000.meta.json +1 -0
- agents/videos/rl-video-step-0-to-step-10000.mp4 +3 -0
- agents/videos/rl-video-step-0-to-step-100000.meta.json +1 -0
- agents/videos/rl-video-step-0-to-step-100000.mp4 +3 -0
- agents/videos/rl-video-step-0-to-step-200.meta.json +1 -0
- agents/videos/rl-video-step-0-to-step-200.mp4 +3 -0
agents/record_video.py
CHANGED
@@ -3,12 +3,13 @@ from stable_baselines3 import DQN
|
|
3 |
from stable_baselines3.common.monitor import Monitor
|
4 |
from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv, VecEnv
|
5 |
|
|
|
6 |
env_id = "ALE/Pacman-v5"
|
7 |
video_folder = "videos/"
|
8 |
-
video_length =
|
9 |
|
10 |
vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])
|
11 |
-
model = DQN.load(
|
12 |
# output: <stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv object at 0x0000029974DC6550>
|
13 |
|
14 |
# vec_env = gym.make(env_id, render_mode="rgb_array")
|
@@ -34,8 +35,19 @@ vec_env = VecVideoRecorder(vec_env,
|
|
34 |
# I want to act according to the policy that has been trained
|
35 |
obs = vec_env.reset()
|
36 |
print(vec_env)
|
37 |
-
for _ in range(video_length + 1):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
action, states = model.predict(obs)
|
39 |
-
obs, _,
|
|
|
|
|
|
|
40 |
# # Save the video
|
41 |
vec_env.close()
|
|
|
3 |
from stable_baselines3.common.monitor import Monitor
|
4 |
from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv, VecEnv
|
5 |
|
6 |
+
model_name = "dqn_v2-5/ALE-Pacman-v5" # path to model, should be an argument
|
7 |
env_id = "ALE/Pacman-v5"
|
8 |
video_folder = "videos/"
|
9 |
+
video_length = 100000 #steps
|
10 |
|
11 |
vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])
|
12 |
+
model = DQN.load(model_name)
|
13 |
# output: <stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv object at 0x0000029974DC6550>
|
14 |
|
15 |
# vec_env = gym.make(env_id, render_mode="rgb_array")
|
|
|
35 |
# I want to act according to the policy that has been trained
|
36 |
obs = vec_env.reset()
|
37 |
print(vec_env)
|
38 |
+
# for _ in range(video_length + 1):
|
39 |
+
# action, states = model.predict(obs)
|
40 |
+
# obs, _, _, _ = vec_env.step(action)
|
41 |
+
|
42 |
+
# Instead of using the specified steps in a for loop
|
43 |
+
# use a while loop to check if the episode has terminated
|
44 |
+
# Stop recording when the episode ends
|
45 |
+
end = True
|
46 |
+
while end == True:
|
47 |
action, states = model.predict(obs)
|
48 |
+
obs, _, done, _ = vec_env.step(action)
|
49 |
+
if done == True:
|
50 |
+
print("exiting loop")
|
51 |
+
end = False
|
52 |
# # Save the video
|
53 |
vec_env.close()
|
agents/videos/rl-video-step-0-to-step-10000.meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step_id": 0, "content_type": "video/mp4"}
|
agents/videos/rl-video-step-0-to-step-10000.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ca60ce100e54e68edd9e76c84bb7f1bfd6730b2ddea8090b7ef0c1ba675e592
|
3 |
+
size 149189
|
agents/videos/rl-video-step-0-to-step-100000.meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step_id": 0, "content_type": "video/mp4"}
|
agents/videos/rl-video-step-0-to-step-100000.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d433123f98e1de6186e713a1890a2ddfc9f2330ace545f5f38b73d3d03f3a0c8
|
3 |
+
size 174076
|
agents/videos/rl-video-step-0-to-step-200.meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step_id": 0, "content_type": "video/mp4"}
|
agents/videos/rl-video-step-0-to-step-200.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ba166ed637c797aef7bc6017b724ae5162ffbb264b57e4f0515140d0e15463
|
3 |
+
size 33296
|