ledmands
commited on
Commit
·
ac49cb8
1
Parent(s):
449b9e9
plot_improvement works OK, could use fine tuning
Browse files- plot_improvement.py +44 -73
plot_improvement.py
CHANGED
@@ -1,79 +1,50 @@
|
|
1 |
import argparse
|
2 |
-
|
3 |
import os
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# Now that I have my sorted evaluations, I can calculate the mean episode reward for each eval
|
28 |
-
mean_eval_rewards = []
|
29 |
-
for eval in sorted_evals:
|
30 |
-
mean_eval_rewards.append(sum(eval) / len(eval))
|
31 |
-
|
32 |
-
# Now I should have a list with the mean evaluation reward with the highest and lowest score tossed out
|
33 |
-
print(mean_eval_rewards)
|
34 |
-
print("num evals: " + str(len(mean_eval_rewards)))
|
35 |
-
|
36 |
-
# I'm dealing with a 2D array. Each element contains an array of ten data points
|
37 |
-
# The number of elements is going to vary for each training run
|
38 |
-
# The number of evaluation episodes will be constant, 10.
|
39 |
-
# I need to convert to a regular list first
|
40 |
-
# I could iterate over each element
|
41 |
-
|
42 |
-
agent_dirs = []
|
43 |
for d in os.listdir("agents/"):
|
44 |
if "dqn_v2" in d:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
avgs = [[]]
|
67 |
-
index = 0
|
68 |
-
for i in eval_list:
|
69 |
-
avgs.append(i)
|
70 |
-
for j in i:
|
71 |
-
j.sort()
|
72 |
-
j.pop()
|
73 |
-
j.pop(0)
|
74 |
-
avgs[index].append(sum(j) / len(j))
|
75 |
-
index += 1
|
76 |
-
|
77 |
-
print(avgs)
|
78 |
|
79 |
-
|
|
|
1 |
import argparse
|
2 |
+
import numpy as np
|
3 |
import os
|
4 |
+
from matplotlib import pyplot as plt
|
5 |
+
|
6 |
+
def calc_stats(filepath):
|
7 |
+
# load the numpy file
|
8 |
+
data = np.load(filepath)["results"]
|
9 |
+
# sort the arrays and delete the first and last elements
|
10 |
+
data = np.sort(data, axis=1)
|
11 |
+
data = np.delete(data, -1, axis=1)
|
12 |
+
data = np.delete(data, 0, axis=1)
|
13 |
+
avg = round(np.mean(data), 2)
|
14 |
+
std = round(np.std(data), 2)
|
15 |
+
return avg, std
|
16 |
+
|
17 |
+
# parser = argparse.ArgumentParser()
|
18 |
+
# parser.add_argument("-f", "--filepath", required=True, help="Specify the file path to the agent.", type=str)
|
19 |
+
# args = parser.parse_args()
|
20 |
+
|
21 |
+
# Get the file paths and store in list.
|
22 |
+
# For each file path, I want to calculate the mean reward. This would be the mean reward for the training run over all evaluations.
|
23 |
+
# For each file path, append the mean reward to an averages list
|
24 |
+
# Plot the averages!
|
25 |
+
|
26 |
+
filepaths = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
for d in os.listdir("agents/"):
|
28 |
if "dqn_v2" in d:
|
29 |
+
path = "agents/" + d + "/evaluations.npz"
|
30 |
+
filepaths.append(path)
|
31 |
+
|
32 |
+
means = []
|
33 |
+
stds = []
|
34 |
+
for path in filepaths:
|
35 |
+
avg, std = calc_stats(path)
|
36 |
+
means.append(avg)
|
37 |
+
stds.append(std)
|
38 |
+
|
39 |
+
runs = []
|
40 |
+
for i in range(len(filepaths)):
|
41 |
+
runs.append(i + 1)
|
42 |
+
plt.xlabel("training runs")
|
43 |
+
plt.ylabel("score")
|
44 |
+
plt.bar(runs, means)
|
45 |
+
plt.bar(runs, stds)
|
46 |
+
plt.legend(["Mean evaluation score", "Standard deviation"])
|
47 |
+
plt.title("Average Evaluation Score and Standard Deviation\nAdjusted for Outliers\nAgent: dqn_v2")
|
48 |
+
plt.show()
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|