ledmands
commited on
Commit
·
c75318b
1
Parent(s):
956eab4
Added videos of the best model from the most recent run
Browse files
record_video.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import gymnasium as gym
|
2 |
from stable_baselines3 import DQN
|
3 |
-
from stable_baselines3.common.monitor import Monitor
|
4 |
from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv, VecEnv
|
5 |
|
6 |
model_name = "agents/dqn_v2-8/best_model" # path to model, should be an argument
|
7 |
env_id = "ALE/Pacman-v5"
|
8 |
video_folder = "videos/"
|
9 |
-
video_length =
|
10 |
|
11 |
vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])
|
12 |
model = DQN.load(model_name)
|
@@ -29,11 +29,11 @@ vec_env = VecVideoRecorder(vec_env,
|
|
29 |
video_folder,
|
30 |
record_video_trigger=lambda x: x == 0,
|
31 |
video_length=video_length,
|
32 |
-
name_prefix=
|
33 |
)
|
34 |
# Once I make the environment, now I need to walk through it...???
|
35 |
# I want to act according to the policy that has been trained
|
36 |
-
|
37 |
print(vec_env)
|
38 |
# for _ in range(video_length + 1):
|
39 |
# action, states = model.predict(obs)
|
@@ -50,4 +50,5 @@ while end == True:
|
|
50 |
print("exiting loop")
|
51 |
end = False
|
52 |
# # Save the video
|
|
|
53 |
vec_env.close()
|
|
|
1 |
import gymnasium as gym
|
2 |
from stable_baselines3 import DQN
|
3 |
+
# from stable_baselines3.common.monitor import Monitor
|
4 |
from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv, VecEnv
|
5 |
|
6 |
model_name = "agents/dqn_v2-8/best_model" # path to model, should be an argument
|
7 |
env_id = "ALE/Pacman-v5"
|
8 |
video_folder = "videos/"
|
9 |
+
video_length = 10000 #steps by hard coding this, I can almost ensure only one episode is recorded...
|
10 |
|
11 |
vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])
|
12 |
model = DQN.load(model_name)
|
|
|
29 |
video_folder,
|
30 |
record_video_trigger=lambda x: x == 0,
|
31 |
video_length=video_length,
|
32 |
+
name_prefix="one-episode_v2-8_bestmodel"
|
33 |
)
|
34 |
# Once I make the environment, now I need to walk through it...???
|
35 |
# I want to act according to the policy that has been trained
|
36 |
+
vec_env.reset()
|
37 |
print(vec_env)
|
38 |
# for _ in range(video_length + 1):
|
39 |
# action, states = model.predict(obs)
|
|
|
50 |
print("exiting loop")
|
51 |
end = False
|
52 |
# # Save the video
|
53 |
+
|
54 |
vec_env.close()
|
videos/one-episode_v2-8_bestmodel-step-0-to-step-10000.meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step_id": 0, "content_type": "video/mp4"}
|
videos/one-episode_v2-8_bestmodel-step-0-to-step-10000.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3884da6b0fbf91b475e9fa9bc9ea1d5a9771c89dba1ca699a22f6ec4cc5de6db
|
3 |
+
size 178260
|
videos/v2-8_bestmodel-step-0-to-step-10000.meta.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"step_id": 0, "content_type": "video/mp4"}
|
videos/v2-8_bestmodel-step-0-to-step-10000.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf95394d8893382c21a7fa1f03a16ad1393fcb0804de19a076ef7adaaa032819
|
3 |
+
size 1458975
|