File size: 1,640 Bytes
7da5337
 
 
 
 
 
 
 
 
 
 
 
37df54c
 
 
 
 
 
 
 
 
 
6703e61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37df54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f39733
84692c3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- en
library_name: ultralytics
pipeline_tag: object-detection
tags:
- yolo
- object-detect
- yolo11
- yolov11
---

# Number and Operator Detection Based on YOLO11x

This repository contains a PyTorch-exported model for detecting numbers (0-10) and basic arithmetic operators (`+`, `-`, `×`, `÷`, `=`) using the YOLO11x architecture. The model has been trained to recognize these symbols in images and return their locations and classifications.

## Model Description

The YOLO11x model is optimized for detecting the following:

- **Numbers**: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- **Operators**: `+`, `-`, `×`, `÷`, `=`
```text
#class
0
1
2
3
4
5
6
7
8
9
div
eqv
minus
mult
plus
```
## How to Use

To use this model in your project, follow the steps below:

### 1. Installation

Ensure you have the `ultralytics` library installed, which is used for YOLO models:

```bash
pip install ultralytics
```

### 2. Load the Model

You can load the model and perform detection on an image as follows:
```python
from ultralytics import YOLO

# Load the model
model = YOLO("./number_11x.pt")

# Perform detection on an image
results = model("image.png")

# Display or process the results
results.show()  # This will display the image with detected objects
```

### 3. Model Inference
The results object contains bounding boxes, labels (e.g., numbers or operators), and confidence scores for each detected object.

Access them like this:

```python
for result in results:
    print(result.boxes)   # Bounding boxes
    print(result.names)   # Detected classes
    print(result.scores)  # Confidence scores
```

![](result.png)

#yolo11