leeyunjai commited on
Commit
148ed85
1 Parent(s): 5d37b08

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Rock Paper Scissors Detection Based on YOLO11x
2
+
3
+ This repository contains a PyTorch-exported model for detecting R.P.S. using the YOLO11x architecture. The model has been trained to recognize these symbols in images and return their locations and classifications.
4
+
5
+ ## Model Description
6
+
7
+ The YOLO11x model is optimized for detecting the following:
8
+
9
+ - **Rock**
10
+ - **Paper**
11
+ - **Scissors**
12
+ ## How to Use
13
+
14
+ To use this model in your project, follow the steps below:
15
+
16
+ ### 1. Installation
17
+
18
+ Ensure you have the `ultralytics` library installed, which is used for YOLO models:
19
+
20
+ ```bash
21
+ pip install ultralytics
22
+ ```
23
+
24
+ ### 2. Load the Model
25
+
26
+ You can load the model and perform detection on an image as follows:
27
+ ```python
28
+ from ultralytics import YOLO
29
+
30
+ # Load the model
31
+ model = YOLO("./rps_11x.pt")
32
+
33
+ # Perform detection on an image
34
+ results = model("image.png")
35
+
36
+ # Display or process the results
37
+ results.show() # This will display the image with detected objects
38
+ ```
39
+
40
+ ### 3. Model Inference
41
+ The results object contains bounding boxes, labels (e.g., numbers or operators), and confidence scores for each detected object.
42
+
43
+ Access them like this:
44
+
45
+ ```python
46
+ for result in results:
47
+ print(result.boxes) # Bounding boxes
48
+ print(result.names) # Detected classes
49
+ print(result.scores) # Confidence scores
50
+ ```
51
+
52
+ ![](result.png)
53
+
54
+ #yolo11