--- language: - vi license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer metrics: - wer model-index: - name: Whisper Base Mnong results: [] --- # Whisper Base Mnong This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the MnongAudio-v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.7309 - Wer: 78.4474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.2709 | 2.0325 | 1000 | 1.3573 | 121.7936 | | 0.5929 | 4.0650 | 2000 | 0.9105 | 81.5333 | | 0.2907 | 6.0976 | 3000 | 0.7671 | 80.9065 | | 0.204 | 8.1301 | 4000 | 0.7309 | 78.4474 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1