build: 3785 (64c6af31) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu llama_model_loader: loaded meta data with 38 key-value pairs and 507 tensors from Mistral-Small-Instruct-2409-IMat-GGUF/Mistral-Small-Instruct-2409.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest)) llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output. llama_model_loader: - kv 0: general.architecture str = llama llama_model_loader: - kv 1: general.type str = model llama_model_loader: - kv 2: general.name str = Mistral Small Instruct 2409 llama_model_loader: - kv 3: general.version str = 2409 llama_model_loader: - kv 4: general.finetune str = Instruct llama_model_loader: - kv 5: general.basename str = Mistral llama_model_loader: - kv 6: general.size_label str = Small llama_model_loader: - kv 7: general.license str = other llama_model_loader: - kv 8: general.license.name str = mrl llama_model_loader: - kv 9: general.license.link str = https://mistral.ai/licenses/MRL-0.1.md llama_model_loader: - kv 10: general.languages arr[str,10] = ["en", "fr", "de", "es", "it", "pt", ... llama_model_loader: - kv 11: llama.block_count u32 = 56 llama_model_loader: - kv 12: llama.context_length u32 = 131072 llama_model_loader: - kv 13: llama.embedding_length u32 = 6144 llama_model_loader: - kv 14: llama.feed_forward_length u32 = 16384 llama_model_loader: - kv 15: llama.attention.head_count u32 = 48 llama_model_loader: - kv 16: llama.attention.head_count_kv u32 = 8 llama_model_loader: - kv 17: llama.rope.freq_base f32 = 1000000.000000 llama_model_loader: - kv 18: llama.attention.layer_norm_rms_epsilon f32 = 0.000010 llama_model_loader: - kv 19: llama.attention.key_length u32 = 128 llama_model_loader: - kv 20: llama.attention.value_length u32 = 128 llama_model_loader: - kv 21: general.file_type u32 = 7 llama_model_loader: - kv 22: llama.vocab_size u32 = 32768 llama_model_loader: - kv 23: llama.rope.dimension_count u32 = 128 llama_model_loader: - kv 24: tokenizer.ggml.add_space_prefix bool = false llama_model_loader: - kv 25: tokenizer.ggml.model str = llama llama_model_loader: - kv 26: tokenizer.ggml.pre str = default llama_model_loader: - kv 27: tokenizer.ggml.tokens arr[str,32768] = ["", "", "", "[INST]", "[... llama_model_loader: - kv 28: tokenizer.ggml.scores arr[f32,32768] = [-1000.000000, -1000.000000, -1000.00... llama_model_loader: - kv 29: tokenizer.ggml.token_type arr[i32,32768] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ... llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 1 llama_model_loader: - kv 31: tokenizer.ggml.eos_token_id u32 = 2 llama_model_loader: - kv 32: tokenizer.ggml.unknown_token_id u32 = 0 llama_model_loader: - kv 33: tokenizer.ggml.padding_token_id u32 = 2 llama_model_loader: - kv 34: tokenizer.ggml.add_bos_token bool = true llama_model_loader: - kv 35: tokenizer.ggml.add_eos_token bool = false llama_model_loader: - kv 36: tokenizer.chat_template str = {%- if messages[0]["role"] == "system... llama_model_loader: - kv 37: general.quantization_version u32 = 2 llama_model_loader: - type f32: 113 tensors llama_model_loader: - type q8_0: 394 tensors llm_load_vocab: special tokens cache size = 771 llm_load_vocab: token to piece cache size = 0.1732 MB llm_load_print_meta: format = GGUF V3 (latest) llm_load_print_meta: arch = llama llm_load_print_meta: vocab type = SPM llm_load_print_meta: n_vocab = 32768 llm_load_print_meta: n_merges = 0 llm_load_print_meta: vocab_only = 0 llm_load_print_meta: n_ctx_train = 131072 llm_load_print_meta: n_embd = 6144 llm_load_print_meta: n_layer = 56 llm_load_print_meta: n_head = 48 llm_load_print_meta: n_head_kv = 8 llm_load_print_meta: n_rot = 128 llm_load_print_meta: n_swa = 0 llm_load_print_meta: n_embd_head_k = 128 llm_load_print_meta: n_embd_head_v = 128 llm_load_print_meta: n_gqa = 6 llm_load_print_meta: n_embd_k_gqa = 1024 llm_load_print_meta: n_embd_v_gqa = 1024 llm_load_print_meta: f_norm_eps = 0.0e+00 llm_load_print_meta: f_norm_rms_eps = 1.0e-05 llm_load_print_meta: f_clamp_kqv = 0.0e+00 llm_load_print_meta: f_max_alibi_bias = 0.0e+00 llm_load_print_meta: f_logit_scale = 0.0e+00 llm_load_print_meta: n_ff = 16384 llm_load_print_meta: n_expert = 0 llm_load_print_meta: n_expert_used = 0 llm_load_print_meta: causal attn = 1 llm_load_print_meta: pooling type = 0 llm_load_print_meta: rope type = 0 llm_load_print_meta: rope scaling = linear llm_load_print_meta: freq_base_train = 1000000.0 llm_load_print_meta: freq_scale_train = 1 llm_load_print_meta: n_ctx_orig_yarn = 131072 llm_load_print_meta: rope_finetuned = unknown llm_load_print_meta: ssm_d_conv = 0 llm_load_print_meta: ssm_d_inner = 0 llm_load_print_meta: ssm_d_state = 0 llm_load_print_meta: ssm_dt_rank = 0 llm_load_print_meta: ssm_dt_b_c_rms = 0 llm_load_print_meta: model type = ?B llm_load_print_meta: model ftype = Q8_0 llm_load_print_meta: model params = 22.25 B llm_load_print_meta: model size = 22.02 GiB (8.50 BPW) llm_load_print_meta: general.name = Mistral Small Instruct 2409 llm_load_print_meta: BOS token = 1 '' llm_load_print_meta: EOS token = 2 '' llm_load_print_meta: UNK token = 0 '' llm_load_print_meta: PAD token = 2 '' llm_load_print_meta: LF token = 781 '<0x0A>' llm_load_print_meta: max token length = 48 ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no ggml_cuda_init: found 1 CUDA devices: Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes llm_load_tensors: ggml ctx size = 0.47 MiB llm_load_tensors: offloading 33 repeating layers to GPU llm_load_tensors: offloaded 33/57 layers to GPU llm_load_tensors: CPU buffer size = 22544.65 MiB llm_load_tensors: CUDA0 buffer size = 13044.80 MiB .................................................................................................... llama_new_context_with_model: n_ctx = 512 llama_new_context_with_model: n_batch = 512 llama_new_context_with_model: n_ubatch = 512 llama_new_context_with_model: flash_attn = 0 llama_new_context_with_model: freq_base = 1000000.0 llama_new_context_with_model: freq_scale = 1 llama_kv_cache_init: CUDA_Host KV buffer size = 46.00 MiB llama_kv_cache_init: CUDA0 KV buffer size = 66.00 MiB llama_new_context_with_model: KV self size = 112.00 MiB, K (f16): 56.00 MiB, V (f16): 56.00 MiB llama_new_context_with_model: CUDA_Host output buffer size = 0.12 MiB llama_new_context_with_model: CUDA0 compute buffer size = 280.00 MiB llama_new_context_with_model: CUDA_Host compute buffer size = 13.01 MiB llama_new_context_with_model: graph nodes = 1798 llama_new_context_with_model: graph splits = 257 system_info: n_threads = 25 (n_threads_batch = 25) / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | compute_imatrix: tokenizing the input .. compute_imatrix: tokenization took 94.793 ms compute_imatrix: computing over 148 chunks with batch_size 512 compute_imatrix: 2.04 seconds per pass - ETA 5.02 minutes [1]3.2578,[2]2.5472,[3]2.6136,[4]2.6874,[5]3.0332,[6]3.0026,[7]2.7358,[8]3.1186,[9]3.2092,[10]3.5380,[11]3.6618,[12]3.4629,[13]3.6335,[14]3.8547,[15]4.1476,[16]4.2618,[17]4.4422,[18]4.5426,[19]4.6160,[20]4.7419,[21]4.6982,[22]4.5494,[23]4.6684,[24]4.6233,[25]4.6366,[26]4.5111,[27]4.6653,[28]4.6147,[29]4.6997,[30]4.5839,[31]4.4966,[32]4.4114,[33]4.4281,[34]4.4607,[35]4.4212,[36]4.2823,[37]4.1864,[38]4.1108,[39]4.0595,[40]4.0172,[41]4.0269,[42]4.0019,[43]3.9943,[44]3.9540,[45]3.9290,[46]3.9498,[47]3.9423,[48]4.0207,[49]4.0451,[50]4.0061,[51]3.9246,[52]3.9374,[53]3.9481,[54]3.9571,[55]3.9401,[56]3.9288,[57]3.9968,[58]4.0671,[59]4.0987,[60]4.0662,[61]4.0831,[62]4.1117,[63]4.1505,[64]4.2216,[65]4.2418,[66]4.2755,[67]4.3050,[68]4.3357,[69]4.3516,[70]4.3645,[71]4.3298,[72]4.3032,[73]4.2990,[74]4.3122,[75]4.3464,[76]4.3419,[77]4.3671,[78]4.3831,[79]4.3728,[80]4.3743,[81]4.3641,[82]4.3770,[83]4.3886,[84]4.3924,[85]4.4106,[86]4.4055,[87]4.4011,[88]4.3942,[89]4.4035,[90]4.3951,[91]4.3805,[92]4.3712,[93]4.3645,[94]4.3920,[95]4.4133,[96]4.4055,[97]4.4084,[98]4.4046,[99]4.4303,[100]4.3983,[101]4.3979,[102]4.3878,[103]4.4028,[104]4.4163,[105]4.4130,[106]4.3927,[107]4.3670,[108]4.3450,[109]4.3203,[110]4.2957,[111]4.2729,[112]4.2506,[113]4.2273,[114]4.2036,[115]4.1819,[116]4.1885,[117]4.2074,[118]4.2497,[119]4.2920,[120]4.3299,[121]4.3881,[122]4.4360,[123]4.4427,[124]4.4511,[125]4.4282,[126]4.4220,[127]4.4146,[128]4.4161,[129]4.3885,[130]4.3600,[131]4.3846,[132]4.4114,[133]4.4152,[134]4.4138,[135]4.4274,[136]4.4498,[137]4.4582,[138]4.4699,[139]4.4877,[140]4.5007,[141]4.4997,[142]4.5229,[143]4.5358,[144]4.5407,[145]4.5531,[146]4.5524,[147]4.5759,[148]4.5945, Final estimate: PPL = 4.5945 +/- 0.05201 llama_perf_context_print: load time = 4372.23 ms llama_perf_context_print: prompt eval time = 283454.45 ms / 75776 tokens ( 3.74 ms per token, 267.33 tokens per second) llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second) llama_perf_context_print: total time = 286343.85 ms / 75777 tokens