File size: 1,918 Bytes
789a184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: cc-by-sa-4.0
base_model: EMBEDDIA/sloberta
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: fine_tuned_copa_sloberta
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# fine_tuned_copa_sloberta

This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6931
- Accuracy: 0.48
- F1: 0.4615

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.7241        | 1.0   | 50   | 0.6931          | 0.52     | 0.5188 |
| 0.7129        | 2.0   | 100  | 0.6931          | 0.42     | 0.4167 |
| 0.7115        | 3.0   | 150  | 0.6931          | 0.46     | 0.4547 |
| 0.7135        | 4.0   | 200  | 0.6931          | 0.54     | 0.5304 |
| 0.7109        | 5.0   | 250  | 0.6931          | 0.51     | 0.5013 |
| 0.7121        | 6.0   | 300  | 0.6931          | 0.5      | 0.4670 |
| 0.7224        | 7.0   | 350  | 0.6931          | 0.51     | 0.4982 |
| 0.7109        | 8.0   | 400  | 0.6931          | 0.48     | 0.4615 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1