File size: 1,993 Bytes
80c48d2
b2c677a
80c48d2
 
 
b2c677a
80c48d2
 
 
 
 
 
 
 
 
 
 
 
 
b2c677a
80c48d2
b2c677a
39a975a
 
80c48d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2c677a
80c48d2
 
 
 
 
 
 
 
 
 
 
b2c677a
 
 
 
 
 
 
 
80c48d2
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: google-bert/bert-base-uncased
metrics:
- accuracy
- f1
model-index:
- name: lora_fine_tuned_cb
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lora_fine_tuned_cb

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4089
- Accuracy: 0.3182
- F1: 0.1536

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 400

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|
| 0.9467        | 3.5714  | 50   | 1.1690          | 0.3182   | 0.1536 |
| 0.7755        | 7.1429  | 100  | 1.2983          | 0.3182   | 0.1536 |
| 0.7396        | 10.7143 | 150  | 1.3709          | 0.3182   | 0.1536 |
| 0.6894        | 14.2857 | 200  | 1.3939          | 0.3182   | 0.1536 |
| 0.7253        | 17.8571 | 250  | 1.4084          | 0.3182   | 0.1536 |
| 0.7187        | 21.4286 | 300  | 1.4133          | 0.3182   | 0.1536 |
| 0.6998        | 25.0    | 350  | 1.4096          | 0.3182   | 0.1536 |
| 0.7152        | 28.5714 | 400  | 1.4089          | 0.3182   | 0.1536 |


### Framework versions

- PEFT 0.10.1.dev0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1