File size: 2,490 Bytes
103048f
063a4c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103048f
 
063a4c4
 
103048f
063a4c4
103048f
063a4c4
 
 
 
103048f
063a4c4
103048f
063a4c4
103048f
063a4c4
103048f
063a4c4
103048f
063a4c4
103048f
063a4c4
103048f
063a4c4
103048f
063a4c4
103048f
063a4c4
 
 
 
 
 
 
 
 
 
 
 
103048f
063a4c4
103048f
063a4c4
 
 
 
 
 
 
 
 
 
 
 
103048f
 
063a4c4
103048f
063a4c4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-100k-gtzan-music-genres-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.98
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-100k-gtzan-music-genres-finetuned-gtzan

This model is a fine-tuned version of [m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres](https://huggingface.co/m3hrdadfi/wav2vec2-base-100k-gtzan-music-genres) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6843
- Accuracy: 0.98

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.1932        | 0.9976 | 53   | 2.1037          | 0.82     |
| 1.9212        | 1.9953 | 106  | 1.8040          | 0.8267   |
| 1.6379        | 2.9929 | 159  | 1.5650          | 0.8667   |
| 1.4604        | 3.9906 | 212  | 1.3201          | 0.9267   |
| 1.2249        | 4.9882 | 265  | 1.1253          | 0.94     |
| 1.075         | 5.9859 | 318  | 0.9814          | 0.96     |
| 0.911         | 6.9835 | 371  | 0.8447          | 0.9667   |
| 0.852         | 8.0    | 425  | 0.7628          | 0.9667   |
| 0.7625        | 8.9976 | 478  | 0.7117          | 0.9733   |
| 0.7099        | 9.9765 | 530  | 0.6843          | 0.98     |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1