--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf tags: - axolotl - generated_from_trainer model-index: - name: 30a236ed-8649-4c2c-987d-2cacf5f85436 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf bf16: true chat_template: llama3 datasets: - data_files: - 761ba631f7869617_train_data.json ds_type: json format: custom path: /workspace/input_data/761ba631f7869617_train_data.json type: field_input: text field_instruction: name field_output: label format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso02/30a236ed-8649-4c2c-987d-2cacf5f85436 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 1.0e-05 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 30 micro_batch_size: 4 mlflow_experiment_name: /tmp/761ba631f7869617_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 20 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 30a236ed-8649-4c2c-987d-2cacf5f85436 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 30a236ed-8649-4c2c-987d-2cacf5f85436 warmup_steps: 5 weight_decay: 0.01 xformers_attention: false ```

# 30a236ed-8649-4c2c-987d-2cacf5f85436 This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.7129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 5 - training_steps: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 7.5749 | 0.0000 | 1 | 3.9099 | | 7.5191 | 0.0001 | 4 | 3.9077 | | 6.6592 | 0.0003 | 8 | 3.8825 | | 6.9418 | 0.0004 | 12 | 3.8428 | | 7.0457 | 0.0005 | 16 | 3.7901 | | 6.8632 | 0.0007 | 20 | 3.7472 | | 7.4406 | 0.0008 | 24 | 3.7231 | | 7.8922 | 0.0010 | 28 | 3.7129 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1