---
library_name: peft
base_model: NousResearch/CodeLlama-13b-hf
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2d745a5a-1d15-4833-b0ca-670d84534c69
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf
bf16: true
chat_template: llama3
datasets:
- data_files:
- 4b3c1f71a19d080c_train_data.json
ds_type: json
field: content
path: /workspace/input_data/4b3c1f71a19d080c_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso03/2d745a5a-1d15-4833-b0ca-670d84534c69
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/4b3c1f71a19d080c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
pad_token:
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2d745a5a-1d15-4833-b0ca-670d84534c69
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2d745a5a-1d15-4833-b0ca-670d84534c69
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
```
# 2d745a5a-1d15-4833-b0ca-670d84534c69
This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf](https://huggingface.co/NousResearch/CodeLlama-13b-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3838
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2476 | 0.0003 | 1 | 0.4695 |
| 0.9901 | 0.0030 | 9 | 0.4587 |
| 1.0971 | 0.0061 | 18 | 0.4295 |
| 1.0392 | 0.0091 | 27 | 0.4172 |
| 0.8091 | 0.0121 | 36 | 0.4073 |
| 0.686 | 0.0151 | 45 | 0.3996 |
| 0.8614 | 0.0182 | 54 | 0.3940 |
| 0.9087 | 0.0212 | 63 | 0.3895 |
| 0.6429 | 0.0242 | 72 | 0.3867 |
| 0.647 | 0.0272 | 81 | 0.3849 |
| 0.8594 | 0.0303 | 90 | 0.3840 |
| 0.6926 | 0.0333 | 99 | 0.3838 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1