--- library_name: peft license: apache-2.0 base_model: TinyLlama/TinyLlama_v1.1 tags: - axolotl - generated_from_trainer model-index: - name: aed26eaf-cb8c-444b-8db3-140c737abbc8 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: TinyLlama/TinyLlama_v1.1 bf16: true chat_template: llama3 datasets: - data_files: - 088370cdcf765917_train_data.json ds_type: json format: custom path: /workspace/input_data/088370cdcf765917_train_data.json type: field_instruction: input field_output: target format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso08/aed26eaf-cb8c-444b-8db3-140c737abbc8 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/088370cdcf765917_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: aed26eaf-cb8c-444b-8db3-140c737abbc8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: aed26eaf-cb8c-444b-8db3-140c737abbc8 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# aed26eaf-cb8c-444b-8db3-140c737abbc8 This model is a fine-tuned version of [TinyLlama/TinyLlama_v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 23 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 6.707 | 0.1333 | 1 | 7.3635 | | 6.0647 | 0.2667 | 2 | 7.3153 | | 6.1734 | 0.5333 | 4 | 6.0430 | | 4.4635 | 0.8 | 6 | 4.2458 | | 5.3024 | 1.0667 | 8 | 2.0245 | | 1.3972 | 1.3333 | 10 | 1.2816 | | 0.9995 | 1.6 | 12 | 0.8389 | | 0.8296 | 1.8667 | 14 | 1.1777 | | 1.0148 | 2.1333 | 16 | 0.9165 | | 0.5688 | 2.4 | 18 | 0.6829 | | 0.5785 | 2.6667 | 20 | 0.4961 | | 0.4477 | 2.9333 | 22 | 0.4476 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1