--- library_name: peft license: llama3 base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 tags: - axolotl - generated_from_trainer model-index: - name: 578a8167-6a71-49e7-baab-4b16020125c0 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0 bf16: true chat_template: llama3 datasets: - data_files: - 1d75612d183d40b1_train_data.json ds_type: json format: custom path: /workspace/input_data/1d75612d183d40b1_train_data.json type: field_instruction: problem field_output: solution format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso11/578a8167-6a71-49e7-baab-4b16020125c0 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/1d75612d183d40b1_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 578a8167-6a71-49e7-baab-4b16020125c0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 578a8167-6a71-49e7-baab-4b16020125c0 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# 578a8167-6a71-49e7-baab-4b16020125c0 This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9599 | 0.0014 | 1 | 0.8199 | | 0.8148 | 0.0123 | 9 | 0.7577 | | 0.7095 | 0.0246 | 18 | 0.7046 | | 0.6287 | 0.0370 | 27 | 0.6858 | | 0.5641 | 0.0493 | 36 | 0.6807 | | 0.5822 | 0.0616 | 45 | 0.6749 | | 0.5411 | 0.0739 | 54 | 0.6698 | | 0.738 | 0.0862 | 63 | 0.6688 | | 0.5858 | 0.0986 | 72 | 0.6657 | | 0.4997 | 0.1109 | 81 | 0.6642 | | 0.9237 | 0.1232 | 90 | 0.6636 | | 0.6409 | 0.1355 | 99 | 0.6634 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1